SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪

SpringBoot教程(三十二) | SpringBoot集成Skywalking链路跟踪

  • 一、Skywalking是什么?
  • 二、Skywalking与JDK版本的对应关系
  • 三、Skywalking下载
  • 四、Skywalking 数据存储
  • 五、Skywalking 的启动
  • 六、部署探针
    • 前提: Agents 8.9.0 放入 项目工程
    • 方式一:IDEA 部署探针
    • 方式二:Java 命令行启动方式
    • 方式三:编写sh脚本启动(linux环境)
  • 七、Springboot 的启动
    • IDEA 部署探针方式启动
    • Skywalking 进行日志配置
    • 实现入参、返参都可查看
      • 方式一:通过 Agent 配置实现 (有缺点)
      • 方式二:通过 trace 和 Filter 实现
      • 方式三:通过 trace 和 Aop 去实现

一、Skywalking是什么?

SkyWalking是一个开源的、用于观测分布式系统(特别是微服务、云原生和容器化应用)的平台。
它提供了对分布式系统的追踪、监控和诊断能力。

二、Skywalking与JDK版本的对应关系

SkyWalking 8.x版本要求Java版本至少为8(即JDK 1.8),
SkyWalking 9.x版本则要求Java版本至少为11(即JDK 11)

所以选择的时候需要注意一下JDK版本。

三、Skywalking下载

Skywalking 官网下载地址 https://skywalking.apache.org/downloads/
在这里插入图片描述

  • 其他的版本的 APM 地址
    https://archive.apache.org/dist/skywalking/

  • 其他的java 版本的 Agents 地址
    https://archive.apache.org/dist/skywalking/java-agent/

注意点:
7.x及以下版本 APM 包里面有包括 Agents,但是8.x的就发现被分开了,所以8.x的及以上的 就需要 Agents 也得下载

目前该文选择 下载 APM 8.9.1 和 Agents 8.9.0 后解压
在这里插入图片描述

四、Skywalking 数据存储

Skywalking 存在多种数据存储

  1. h2(默认的存储方式,重启后数据会丢失)
  2. Elasticsearch (最常用的数据存储方式)
  3. MySQL
  4. TiDB

相关文件OAP 配置文件(config/application.yml)
我只截取了关于设置存储方式的部分

storage:
  selector: ${SW_STORAGE:h2}
  elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    connectTimeout: ${SW_STORAGE_ES_CONNECT_TIMEOUT:500}
    socketTimeout: ${SW_STORAGE_ES_SOCKET_TIMEOUT:30000}
    numHttpClientThread: ${SW_STORAGE_ES_NUM_HTTP_CLIENT_THREAD:0}
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    indexTemplateOrder: ${SW_STORAGE_ES_INDEX_TEMPLATE_ORDER:0} # the order of index template
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  h2:
    driver: ${SW_STORAGE_H2_DRIVER:org.h2.jdbcx.JdbcDataSource}
    url: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db;DB_CLOSE_DELAY=-1}
    user: ${SW_STORAGE_H2_USER:sa}
    metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:100}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:1}
  mysql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:3306/swtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:root@1234}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  tidb:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:4000/tidbswtest?rewriteBatchedStatements=true"}
      dataSource.user: ${SW_DATA_SOURCE_USER:root}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:""}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
      dataSource.useAffectedRows: ${SW_DATA_SOURCE_USE_AFFECTED_ROWS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  influxdb:
    # InfluxDB configuration
    url: ${SW_STORAGE_INFLUXDB_URL:http://localhost:8086}
    user: ${SW_STORAGE_INFLUXDB_USER:root}
    password: ${SW_STORAGE_INFLUXDB_PASSWORD:}
    database: ${SW_STORAGE_INFLUXDB_DATABASE:skywalking}
    actions: ${SW_STORAGE_INFLUXDB_ACTIONS:1000} # the number of actions to collect
    duration: ${SW_STORAGE_INFLUXDB_DURATION:1000} # the time to wait at most (milliseconds)
    batchEnabled: ${SW_STORAGE_INFLUXDB_BATCH_ENABLED:true}
    fetchTaskLogMaxSize: ${SW_STORAGE_INFLUXDB_FETCH_TASK_LOG_MAX_SIZE:5000} # the max number of fetch task log in a request
    connectionResponseFormat: ${SW_STORAGE_INFLUXDB_CONNECTION_RESPONSE_FORMAT:MSGPACK} # the response format of connection to influxDB, cannot be anything but MSGPACK or JSON.
  postgresql:
    properties:
      jdbcUrl: ${SW_JDBC_URL:"jdbc:postgresql://localhost:5432/skywalking"}
      dataSource.user: ${SW_DATA_SOURCE_USER:postgres}
      dataSource.password: ${SW_DATA_SOURCE_PASSWORD:123456}
      dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true}
      dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250}
      dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048}
      dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true}
    metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000}
    maxSizeOfArrayColumn: ${SW_STORAGE_MAX_SIZE_OF_ARRAY_COLUMN:20}
    numOfSearchableValuesPerTag: ${SW_STORAGE_NUM_OF_SEARCHABLE_VALUES_PER_TAG:2}
    maxSizeOfBatchSql: ${SW_STORAGE_MAX_SIZE_OF_BATCH_SQL:2000}
    asyncBatchPersistentPoolSize: ${SW_STORAGE_ASYNC_BATCH_PERSISTENT_POOL_SIZE:4}
  zipkin-elasticsearch:
    namespace: ${SW_NAMESPACE:""}
    clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200}
    protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"}
    trustStorePath: ${SW_STORAGE_ES_SSL_JKS_PATH:""}
    trustStorePass: ${SW_STORAGE_ES_SSL_JKS_PASS:""}
    dayStep: ${SW_STORAGE_DAY_STEP:1} # Represent the number of days in the one minute/hour/day index.
    indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:1} # Shard number of new indexes
    indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:1} # Replicas number of new indexes
    # Super data set has been defined in the codes, such as trace segments.The following 3 config would be improve es performance when storage super size data in es.
    superDatasetDayStep: ${SW_SUPERDATASET_STORAGE_DAY_STEP:-1} # Represent the number of days in the super size dataset record index, the default value is the same as dayStep when the value is less than 0
    superDatasetIndexShardsFactor: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_SHARDS_FACTOR:5} #  This factor provides more shards for the super data set, shards number = indexShardsNumber * superDatasetIndexShardsFactor. Also, this factor effects Zipkin and Jaeger traces.
    superDatasetIndexReplicasNumber: ${SW_STORAGE_ES_SUPER_DATASET_INDEX_REPLICAS_NUMBER:0} # Represent the replicas number in the super size dataset record index, the default value is 0.
    user: ${SW_ES_USER:""}
    password: ${SW_ES_PASSWORD:""}
    secretsManagementFile: ${SW_ES_SECRETS_MANAGEMENT_FILE:""} # Secrets management file in the properties format includes the username, password, which are managed by 3rd party tool.
    bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:5000} # Execute the async bulk record data every ${SW_STORAGE_ES_BULK_ACTIONS} requests
    # flush the bulk every 10 seconds whatever the number of requests
    # INT(flushInterval * 2/3) would be used for index refresh period.
    flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:15}
    concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests
    resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000}
    metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000}
    segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200}
    profileTaskQueryMaxSize: ${SW_STORAGE_ES_QUERY_PROFILE_TASK_SIZE:200}
    oapAnalyzer: ${SW_STORAGE_ES_OAP_ANALYZER:"{\"analyzer\":{\"oap_analyzer\":{\"type\":\"stop\"}}}"} # the oap analyzer.
    oapLogAnalyzer: ${SW_STORAGE_ES_OAP_LOG_ANALYZER:"{\"analyzer\":{\"oap_log_analyzer\":{\"type\":\"standard\"}}}"} # the oap log analyzer. It could be customized by the ES analyzer configuration to support more language log formats, such as Chinese log, Japanese log and etc.
    advanced: ${SW_STORAGE_ES_ADVANCED:""}
  iotdb:
    host: ${SW_STORAGE_IOTDB_HOST:127.0.0.1}
    rpcPort: ${SW_STORAGE_IOTDB_RPC_PORT:6667}
    username: ${SW_STORAGE_IOTDB_USERNAME:root}
    password: ${SW_STORAGE_IOTDB_PASSWORD:root}
    storageGroup: ${SW_STORAGE_IOTDB_STORAGE_GROUP:root.skywalking}
    sessionPoolSize: ${SW_STORAGE_IOTDB_SESSIONPOOL_SIZE:16}
    fetchTaskLogMaxSize: ${SW_STORAGE_IOTDB_FETCH_TASK_LOG_MAX_SIZE:1000} # the max number of fetch task log in a request


五、Skywalking 的启动

进入 D:\apache-skywalking-apm-8.9.1\apache-skywalking-apm-bin\bin ,双击运行 startup.bat(用管理员方式启动),会开启两个命令行窗口。

  • (1)Skywalking-Collector:追踪信息收集器,通过 gRPC/Http 收集客户端的采集信息 。Http默认端口 12800,gRPC默认端口 11800。(如需要修改,可前往 apache-skywalking-apm-bin\config\applicaiton.yml 进行修改)
  • (2)Skywalking-Webapp:管理平台页面 默认端口 8080 (如需要修改,可前往 apache-skywalking-apm-bin\webapp\webapp.yml 进行修改)

启动图如下:
在这里插入图片描述

接着浏览器Skywalking访问:http://localhost:8080/
这个右边有个自动刷新的按钮,一定要启动起来
不然到时候,springboot工程启动以后,你以为没有连接成功(F5刷新页面是没有用的)
在这里插入图片描述

六、部署探针

前提: Agents 8.9.0 放入 项目工程

也不说放其他位置不好,不过放到项目里面更好一点,后面你就能感受到便利了

在这里插入图片描述

方式一:IDEA 部署探针

修改启动类的 VM options(虚拟机选项)配置
在这里插入图片描述

在这里插入图片描述
配置的jvm参数如下:

-javaagent:D:\ideaObject\reactBoot\springboot-full\src\main\skywalking-agent\skywalking-agent.jar
-Dskywalking.agent.service_name=woqu-ndy
-Dskywalking.collector.backend_service=127.0.0.1:11800
  • javaagent: 表示 skywalking‐agent.jar的本地磁盘的路径
    (我这边是放到项目里面了)
    -Dskywalking.agent.service_name:表示在skywalking上显示的服务名
    -Dskywalking.collector.backend_service:表示skywalking的collector服务的IP及端口
  • 注意:-Dskywalking.collector.backend_service 可以指定远程地址, 但是 javaagent 必须绑定你本机物理路径的 skywalking-agent.jar

方式二:Java 命令行启动方式

java -javaagent:D:\ideaObject\reactBoot\springboot-full\src\main\skywalking-agent\skywalking-agent.jar=-Dskywalking.agent.service_name=service-myapp,-Dskywalking.collector.backend_service=localhost:11800 -jar service-myapp.jar

方式三:编写sh脚本启动(linux环境)

#!/bin/bash  

# 设置 SkyWalking Agent 的路径  
AGENT_PATH="/home/yourusername/Desktop/apache-skywalking-apm-6.6.0/apache-skywalking-apm-bin/agent"  

# 设置 Java 应用的 JAR 文件路径  
JAR_PATH="/path/to/your/service-myapp.jar"  

# 设置 SkyWalking 服务名称和 Collector 后端服务地址  
SERVICE_NAME="service-myapp"  
COLLECTOR_BACKEND_SERVICE="localhost:11800"  

# 构造 Java Agent 参数  
JAVA_AGENT="-javaagent:$AGENT_PATH/skywalking-agent.jar \  
            -Dskywalking.agent.service_name=$SERVICE_NAME \  
            -Dskywalking.collector.backend_service=$COLLECTOR_BACKEND_SERVICE"  
  
# 启动 Java 应用  
java $JAVA_AGENT -jar $JAR_PATH

七、Springboot 的启动

IDEA 部署探针方式启动

启动后,控制台日志输出开头出现了以下的记录,就表示连接上Skywalking了
在这里插入图片描述
再看 Skywalking(http://localhost:8080/) 页面那边,你就会发现有个这个图(表示连接上了)
在这里插入图片描述
我们再请求一下 Controller 的接口,就会发现捕获了相关接口记录
(但是目前,还是没有接口具体详细的日志入参或者出参的)
在这里插入图片描述
在这里插入图片描述

Skywalking 进行日志配置

为log日志增加 skywalking的 traceId(追踪ID)。便于排查

首先引入maven依赖

 <!-- SkyWalking 的日志工具包 -->
<dependency>
   <groupId>org.apache.skywalking</groupId>
   <artifactId>apm-toolkit-logback-1.x</artifactId>
   <version>9.0.0</version>
</dependency>

接着在 resources文件夹下创建 logback-spring.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false">

    <!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径-->
    <property name="LOG_HOME" value="D:/logs/" ></property>

    <!-- 彩色日志 -->
    <conversionRule conversionWord="clr" converterClass="org.springframework.boot.logging.logback.ColorConverter" />

    <!--控制台日志, 控制台输出 -->
    <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <pattern>%clr(%d{yyyy-MM-dd HH:mm:ss.SSS}){faint} [%X{tid}] %clr([%-10.10thread]){faint} %clr(%-5level) %clr(%-50.50logger{50}:%-3L){cyan} %clr(-){faint} %msg%n</pattern>
            </layout>
        </encoder>
    </appender>

    <!--文件日志, 按照每天生成日志文件 (只能是 由 Logger 或者 LoggerFactory 记录的日志消息哦)-->
    <!--以下关于 日志文件的pattern 需要去掉颜色,防止出现 ANSI转义序列-->
    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <!--日志文件输出的文件名-->
            <FileNamePattern>${LOG_HOME}/%d{yyyy-MM-dd}/pro.log</FileNamePattern>
            <!--日志文件保留天数-->
            <MaxHistory>30</MaxHistory>
        </rollingPolicy>
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <!--格式化输出:%d表示日期,%thread表示线程名,%-5level:级别从左显示5个字符宽度%msg:日志消息,%n是换行符-->
                <!--            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>-->
                <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%-10.10thread] %-5level %-50.50logger{50}:%-3L - %msg%n</pattern>
            </layout>
        </encoder>
        <!--日志文件最大的大小-->
        <triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
            <MaxFileSize>10MB</MaxFileSize>
        </triggeringPolicy>
    </appender>

    <!--skywalking grpc 日志收集-->
    <appender name="grpc" class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.log.GRPCLogClientAppender">
        <encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
            <layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.mdc.TraceIdMDCPatternLogbackLayout">
                <Pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{tid}] [%thread] %-5level %logger{36} -%msg%n</Pattern>
            </layout>
        </encoder>
    </appender>


    <!-- 日志输出级别 -->
    <root level="INFO">
        <appender-ref ref="STDOUT" ></appender-ref>
        <appender-ref ref="FILE" ></appender-ref>
        <appender-ref ref="grpc"/>
    </root>
</configuration>


请求接口就可以发现TID的输出
(在这里是882c67dc859046c398fbfc5725df9de0.109.17288962842340001)
在这里插入图片描述

然后把它放到 追踪 栏目的追踪id ,可以查到记录

在这里插入图片描述
然后把它放到 日志 栏目的追踪id ,可以查到记录
在这里插入图片描述

实现入参、返参都可查看

方式一:通过 Agent 配置实现 (有缺点)

首先,你需要确认SkyWalking的Agent配置。
SkyWalking的Agent在启动时会读取配置文件,通常是agent.config。
默认情况下,请求参数的采集是关闭的,你需要手动开启。
具体步骤如下:
在你的SkyWalking Agent配置文件agent.config中,找到plugin部分,确保以下配置项设置为true:

plugin.tomcat.collect_http_params=${SW_PLUGIN_TOMCAT_COLLECT_HTTP_PARAMS:true}
plugin.springmvc.collect_http_params=${SW_PLUGIN_SPRINGMVC_COLLECT_HTTP_PARAMS:true}
plugin.httpclient.collect_http_params=${SW_PLUGIN_HTTPCLIENT_COLLECT_HTTP_PARAMS:true}

缺点:可是以上设置,只能开启get请求的入参采集,post无法获取到,这个方式不怎么好

方式二:通过 trace 和 Filter 实现

一、引入追踪工具包

<!-- SkyWalking 追踪工具包 -->
<dependency>
   <groupId>org.apache.skywalking</groupId>
   <artifactId>apm-toolkit-trace</artifactId>
   <version>9.0.0</version>
</dependency>

二、使用 HttpFilter 和 ContentCachingRequestWrapper

知识小贴士:为什么不用HttpServletRequest?
如果直接把HttpServletRequest中的InputStream读取后输出日志,会导致后续业务逻辑读取不到InputStream中的内容,因为流只能读取一次。

package com.example.springbootfull.quartztest.Filter;

import lombok.extern.slf4j.Slf4j;
import org.apache.skywalking.apm.toolkit.trace.ActiveSpan;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import org.springframework.web.util.ContentCachingRequestWrapper;
import org.springframework.web.util.ContentCachingResponseWrapper;

import javax.servlet.FilterChain;
import javax.servlet.ServletException;
import javax.servlet.http.HttpFilter;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Set;
import java.util.stream.Collectors;

@Slf4j
@Component
public class ApmHttpInfo extends HttpFilter {
    //被忽略的头部信息  
    private static final Set<String> IGNORED_HEADERS;
    static {
        Set<String> ignoredHeaders = new HashSet<>();
        ignoredHeaders.addAll(
                java.util.Arrays.asList(
                        "Content-Type",
                        "User-Agent",
                        "Accept",
                        "Cache-Control",
                        "Postman-Token",
                        "Host",
                        "Accept-Encoding",
                        "Connection",
                        "Content-Length"
                ).stream()
                        .map(String::toUpperCase)
                        .collect(Collectors.toList())
        );
        IGNORED_HEADERS = ignoredHeaders;
    }

    @Override
    public void doFilter(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain) throws IOException, ServletException {
        ContentCachingRequestWrapper requestWrapper = new ContentCachingRequestWrapper(request);
        ContentCachingResponseWrapper responseWrapper = new ContentCachingResponseWrapper(response);

        try {
            filterChain.doFilter(requestWrapper, responseWrapper);
        } finally {
            try {
                //构造请求信息: 比如 curl -X GET http://localhost:18080/getPerson?id=1 -H 'token: me-token' -d '{ "name": "hello" }'
                //构造请求的方法&URL&参数
                StringBuilder sb = new StringBuilder("curl")
                        .append(" -X ").append(request.getMethod())
                        .append(" ").append(request.getRequestURL().toString());
                if (StringUtils.hasLength(request.getQueryString())) {
                    sb.append("?").append(request.getQueryString());
                }

                //构造header
                Enumeration<String> headerNames = request.getHeaderNames();
                while (headerNames.hasMoreElements()) {
                    String headerName = headerNames.nextElement();
                    if (!IGNORED_HEADERS.contains(headerName.toUpperCase())) {
                        sb.append(" -H '").append(headerName).append(": ").append(request.getHeader(headerName)).append("'");
                    }
                }

                //获取body
                String body = new String(requestWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);
                if (StringUtils.hasLength(body)) {
                    sb.append(" -d '").append(body).append("'");
                }
                //输出到input
                ActiveSpan.tag("input", sb.toString());

                //获取返回值body
                String responseBody = new String(responseWrapper.getContentAsByteArray(), StandardCharsets.UTF_8);
                //输出到output
                ActiveSpan.tag("output", responseBody);
            } catch (Exception e) {
                log.warn("fail to build http log", e);
            } finally {
                //这一行必须添加,否则就一直不返回
                responseWrapper.copyBodyToResponse();
            }
        }
    }
}

效果如下(get请求):
在这里插入图片描述
效果如下(post请求):
在这里插入图片描述

方式三:通过 trace 和 Aop 去实现

在此就不细说了,这个也是一种方案

参考文章
【1】skywalking环境搭建(windows)
【2】windows下安装skywalking 9.2
【3】skywalking9.1结合logback配置日志收集
【4】SpringBoot集成Skywalking日志收集
【5】skywalking展示http请求和响应

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/894422.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#从零开始学习(用unity探索C#)(unity Lab1)

初次使用Unity 本章所有的代码都放在 https://github.com/hikinazimi/head-first-Csharp Unity的下载与安装 从 unity官网下载Unity Hub Unity的使用 安装后,注册账号,下载unity版本,然后创建3d项目 设置窗口界面布局 3D对象的创建 点击对象,然后点击Move Guzmo,就可以拖动…

云服务解决方案,针对小程序、网页、HTML5等轻量化视频解决方案

无论是社交媒体上的短视频分享&#xff0c;还是企业官网中的产品展示&#xff0c;亦或是教育平台上的互动课程&#xff0c;高质量、易制作的视频内容正以前所未有的速度改变着我们的生活方式和工作模式。然而&#xff0c;面对多样化的发布平台和日益增长的个性化需求&#xff0…

Python从0到100(六十五):Python OpenCV-图像运颜色转换及几何变换

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

.net 根据html的input type=“week“控件的值获取星期一和星期日的日期

初始化 "week" 控件值&#xff1a; //MVC部分 public ActionResult WeeklyList() {int weekNo new GregorianCalendar().GetWeekOfYear(System.DateTime.Now, System.Globalization.CalendarWeekRule.FirstDay, DayOfWeek.Sunday);string DefaultWeek DateTime.No…

ssm医院交互系统+vue

系统包含&#xff1a;源码论文 所用技术&#xff1a;SpringBootVueSSMMybatisMysql 免费提供给大家参考或者学习&#xff0c;获取源码请私聊我 需要定制请私聊 目 录 摘要 I Abstract II 1绪论 1 1.1研究背景与意义 1 1.1.1研究背景 1 1.1.2研究意义 1 1.2国内外研究…

python+大数据+基于spark的短视频推荐系统【内含源码+文档+部署教程】

博主介绍&#xff1a;✌全网粉丝10W,前互联网大厂软件研发、集结硕博英豪成立工作室。专注于计算机相关专业毕业设计项目实战6年之久&#xff0c;选择我们就是选择放心、选择安心毕业✌ &#x1f345;由于篇幅限制&#xff0c;想要获取完整文章或者源码&#xff0c;或者代做&am…

Mybatis框架 day1018

ok了家人们书接上文&#xff0c;我们继续学习mybatis框架 五.数据输出 5.7 属性和字段的映射 5.7.1 别名映射 将数据库表的字段别名设置成和实体类属性一致。 <!-- 给每一个字段设置一个别名&#xff0c;让别名和Java实体类中 属性名一致 --> <select id"fi…

赋能特大城市水务数据安全高速运算,深圳计算科学研究院YashanDB数据库系统斩获“鼎新杯”二等奖

第三届“鼎新杯”数字化转型应用优秀案例评选结果日前正式公布&#xff0c;深圳计算科学研究院联合深圳市环境水务集团有限公司申报的《深圳环境水务国产数据库YashanDB&#xff0c;赋能特大城市水务数据安全高速运转》案例&#xff0c;经过5个多月的评审&#xff0c;从4000申报…

设计模式04-创建型模式1(简单工厂/工厂模式/抽象工厂/Java)

3.1 简单工厂模式 3.1.1 创建型模式 创建型设计模式将对象的创建过程和对象的使用过程分离&#xff0c;用户使用对象时无需关注对象的创建细节&#xff0c;外界对于这些对象只需要知道它们共同的接口&#xff0c;而不用清楚其实现细节&#xff0c;使得整个系统的设计更加符合…

Redis JSON介绍

Redis JSON介绍 Redis JSON先说说JSON是什么再说说JSON Path先推荐两个网站JSONPath JAVA clents Redis JSON 安装内存json命令语法命令url命令解释JSON.ARRAPPENDJSON.ARRINDEXJSON.ARRINSERTJSON.ARRLENJSON.ARRPOPJSON.ARRTRIMJSON.CLEARJSON.DEBUG MEMORYJSON.DEBUGJSON.DE…

单例模式(自动加载)

目录 介绍 使用 在脚本中写一个函数 让一个「自定义场景」作为单例「自动加载」 介绍 单例模式是编程中的一种设计思想&#xff0c;是为了解决某些编程语言中没有全局变量概念而产生的这对于实现某种模块非常好用 比如玩家信息&#xff0c;有时候&#xff0c;游戏中的很多…

数组中超过一半的元素

有一个数组&#xff0c;找出其中数量超过的元素是谁。比如数组 [3, 2, 3] &#xff0c;输出 3。 这个问题要解起来不难&#xff0c;暴力计数&#xff0c;转为 map&#xff0c;排序都能解决。但是他们的空间复杂度都不低&#xff0c;即便排序能做到 O(1) 的空间复杂度&#xff…

计算机系统简介

一、计算机的软硬件概念 1.硬件&#xff1a;计算机的实体&#xff0c;如主机、外设、硬盘、显卡等。 2.软件&#xff1a;由具有各类特殊功能的信息&#xff08;程序&#xff09;组成。 系统软件&#xff1a;用来管理整个计算机系统&#xff0c;如语言处理程序、操作系统、服…

电影评论网站:Spring Boot技术栈应用

1系统概述 1.1 研究背景 随着计算机技术的发展以及计算机网络的逐渐普及&#xff0c;互联网成为人们查找信息的重要场所&#xff0c;二十一世纪是信息的时代&#xff0c;所以信息的管理显得特别重要。因此&#xff0c;使用计算机来管理电影评论网站的相关信息成为必然。开发合适…

安装macOS Sequoia注意事项

随着macOS Sequoia的发布&#xff0c;许多Mac用户开始计划升级到这一最新版本。然而&#xff0c;升级系统并非简单点击“升级”按钮即可。在安装新系统之前&#xff0c;有一些关键的注意事项可以帮助你避免潜在的问题&#xff0c;确保顺利过渡到macOS Sequoia。本文将详细介绍在…

FPGA图像处理之三行缓存

文章目录 一、前言二、FPGA实现三行缓存的架构三、Verilog代码实现四、仿真验证五、输入图像数据进行仿真验证 一、前言 在 FPGA 做图像处理时&#xff0c;行缓存是一个非常重要的一个步骤&#xff0c;因为图像输入还有输出都是一行一行进行的&#xff0c;即处理完一行后再处理…

实现uniapp天地图边界范围覆盖

前言&#xff1a; 在uniapp中&#xff0c;难免会遇到使用地图展示的功能&#xff0c;但是百度谷歌这些收费的显然对于大部分开源节流的开发者是不愿意接受的&#xff0c;所以天地图则是最佳选择。 此篇文章&#xff0c;详细的实现地图展示功能&#xff0c;并且可以自定义容器宽…

Python画笔案例-086 turtle 多线程绘画

1、turtle 多线程绘画 通过 python 的turtle 库 多线程绘画,如下图: 2、实现代码 turtle 库 多线程绘画,以下为实现代码: """多线程绘画.py """ from random import random,randint from turtle import Turtle,Screen from threading

SpringDataRedis快速入门

SpringDataRedis 什么是SpringDataRedis SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis SpringDataRedis中提供了RedsiTemplate工具类,其中封装了各种对Redis的操作。并且将不同数据类型的操作API封装到了不同的类…

redis基础—主从同步原理与配置以及哨兵模式

一&#xff1a;redis的主从同步原理 1.slave节点发送同步请求到master节点 2.slave节点通过master节点的认证开始进行同步 3.认证结束后&#xff0c;master节点开启bgsave进程 4.master节点会开启bgsave进程发送内存快照rbd到slave节点&#xff0c;在此过程中是异步操作&…