牛客网 SQL36查找后排序

SQL36查找后排序

select device_id,age from user_profile order by age asc
#select [字段1,字段2] from [表名] order by [字段1] [升序(asc)/降序(desc)],[字段2] [升序(asc)/降序(desc)]
#select:查询
#order by 排序

每日问题

如何实现对象的克隆?

在 C++ 中,实现对象的克隆通常涉及到复制对象的状态,以便创建一个新的对象,其内容与原始对象相同。克隆通常是通过深拷贝来实现的,特别是当对象包含动态分配的内存或资源时,使用浅拷贝可能导致资源共享和潜在的问题(如双重删除)。下面是实现对象克隆的一些常见方式。

1. 通过拷贝构造函数实现克隆

拷贝构造函数是用来创建一个对象,该对象是另一个对象的副本。默认情况下,拷贝构造函数执行浅拷贝,即复制对象的成员变量。但对于需要深拷贝的类(例如,包含动态内存分配的类),需要自己实现拷贝构造函数。

示例:

#include <iostream>
#include <cstring>  // for strcpy

class Person {
public:
    char* name;
    int age;

    // 构造函数
    Person(const char* n, int a) {
        name = new char[strlen(n) + 1];
        strcpy(name, n);
        age = a;
    }

    // 拷贝构造函数:实现深拷贝
    Person(const Person& other) {
        name = new char[strlen(other.name) + 1];
        strcpy(name, other.name);
        age = other.age;
    }

    // 析构函数
    ~Person() {
        delete[] name;
    }

    // 打印函数
    void print() const {
        std::cout << "Name: " << name << ", Age: " << age << std::endl;
    }
};

int main() {
    Person p1("John", 30);  // 创建一个对象
    Person p2 = p1;  // 使用拷贝构造函数克隆 p1

    p1.print();
    p2.print();

    return 0;
}

输出:

Name: John, Age: 30
Name: John, Age: 30

在这个例子中,Person 类有一个拷贝构造函数,它深拷贝了对象的 name 字符串和 age 整数。new 操作符确保了 name 字符串的深拷贝,避免了浅拷贝可能带来的资源共享问题。

2. 通过克隆接口实现克隆

如果你的类层次结构比较复杂,可能有一个基类,并且需要让派生类支持克隆操作,可以定义一个 clone() 方法。通常,clone() 方法返回一个指向新对象的指针,确保每个派生类都能正确实现其克隆。

为了实现这种方法,通常使用 虚函数 和 工厂方法。

示例:

#include <iostream>
#include <cstring>

class Shape {
public:
    virtual ~Shape() = default;

    // 克隆接口
    virtual Shape* clone() const = 0;

    virtual void draw() const = 0;
};

class Circle : public Shape {
public:
    Circle(int r) : radius(r) {}

    // 克隆方法:实现圆形的深拷贝
    Shape* clone() const override {
        return new Circle(*this);  // 使用拷贝构造函数克隆
    }

    void draw() const override {
        std::cout << "Drawing a circle with radius " << radius << std::endl;
    }

private:
    int radius;
};

class Rectangle : public Shape {
public:
    Rectangle(int w, int h) : width(w), height(h) {}

    // 克隆方法:实现矩形的深拷贝
    Shape* clone() const override {
        return new Rectangle(*this);  // 使用拷贝构造函数克隆
    }

    void draw() const override {
        std::cout << "Drawing a rectangle with width " << width << " and height " << height << std::endl;
    }

private:
    int width, height;
};

int main() {
    Shape* circle = new Circle(5);
    Shape* rectangle = new Rectangle(10, 20);

    // 克隆对象
    Shape* clonedCircle = circle->clone();
    Shape* clonedRectangle = rectangle->clone();

    // 调用 draw 方法
    circle->draw();
    rectangle->draw();
    clonedCircle->draw();
    clonedRectangle->draw();

    // 释放内存
    delete circle;
    delete rectangle;
    delete clonedCircle;
    delete clonedRectangle;

    return 0;
}

输出:

Drawing a circle with radius 5
Drawing a rectangle with width 10 and height 20
Drawing a circle with radius 5
Drawing a rectangle with width 10 and height 20

在这个例子中,我们创建了一个 Shape 基类,并在每个派生类(Circle 和 Rectangle)中实现了 clone() 方法。clone() 方法返回一个新创建的对象,确保每个派生类都能正确地进行深拷贝。

3. 使用 std::unique_ptr 或 std::shared_ptr 实现克隆

如果对象的管理使用智能指针,可以通过智能指针来管理对象的生命周期。在这种情况下,克隆通常会涉及到复制智能指针所管理的对象。

示例:

#include <iostream>
#include <memory>  // for unique_ptr

class MyClass {
public:
    MyClass(int x) : data(x) {}
    MyClass(const MyClass& other) : data(other.data) {}  // 拷贝构造函数

    void print() const {
        std::cout << "Data: " << data << std::endl;
    }

private:
    int data;
};

int main() {
    std::unique_ptr<MyClass> ptr1 = std::make_unique<MyClass>(10);

    // 克隆 ptr1
    std::unique_ptr<MyClass> ptr2 = std::make_unique<MyClass>(*ptr1);

    ptr1->print();
    ptr2->print();

    return 0;
}

输出:

Data: 10
Data: 10

在这个例子中,我们使用 std::unique_ptr 来管理 MyClass 的对象。在克隆时,我们通过 std::make_unique 和拷贝构造函数来创建新对象。

4. 通过工厂方法实现克隆

如果你希望将克隆操作与类的实例化分离,可以使用工厂方法来创建和克隆对象。这种方法特别适用于需要根据不同参数构造对象的情况。

示例:

#include <iostream>

class Animal {
public:
    virtual ~Animal() = default;
    virtual Animal* clone() const = 0;
    virtual void speak() const = 0;
};

class Dog : public Animal {
public:
    Dog* clone() const override {
        return new Dog(*this);  // 使用拷贝构造函数克隆
    }

    void speak() const override {
        std::cout << "Woof!" << std::endl;
    }
};

class Cat : public Animal {
public:
    Cat* clone() const override {
        return new Cat(*this);  // 使用拷贝构造函数克隆
    }

    void speak() const override {
        std::cout << "Meow!" << std::endl;
    }
};

int main() {
    Animal* dog = new Dog();
    Animal* cat = new Cat();

    // 克隆对象
    Animal* clonedDog = dog->clone();
    Animal* clonedCat = cat->clone();

    dog->speak();
    cat->speak();
    clonedDog->speak();
    clonedCat->speak();

    delete dog;
    delete cat;
    delete clonedDog;
    delete clonedCat;

    return 0;
}

输出:

Woof!
Meow!
Woof!
Meow!

总结

在 C++ 中实现对象克隆的主要方法有:

        1.通过拷贝构造函数实现克隆:适用于大多数简单的对象。需要自己编写拷贝构造函数,确保正确进行深拷贝。

        2.通过克隆接口(clone() 方法)实现克隆:适用于有继承关系的类,能够让基类定义一个虚拟的 clone() 方法,派生类实现具体的克隆逻辑。

        3.使用智能指针管理克隆:适用于使用智能指针(如 std::unique_ptr 或 std::shared_ptr)管理资源的对象,可以通过拷贝构造来克隆。

        4.通过工厂方法实现克隆:通过一个专门的工厂方法来创建和克隆对象,适用于需要动态生成对象的情况。

如何实现单例模式?

在 C++ 中,单例模式(Singleton Pattern)是一种常用的设计模式,用于确保一个类只有一个实例,并且提供一个全局访问点来获取该实例。单例模式通常用于管理全局资源(如数据库连接、日志对象等),保证在应用程序的生命周期中只创建一个实例。

单例模式的关键特性:

        1.私有构造函数:防止外部直接创建对象。

        2.静态成员:用于存储类的唯一实例。

        3.公有静态方法:提供访问该实例的方式。

单例模式的基本实现

#include <iostream>

class Singleton {
private:
    // 私有构造函数,防止外部直接创建对象
    Singleton() {
        std::cout << "Singleton created!" << std::endl;
    }

    // 私有拷贝构造函数和赋值运算符,防止复制对象
    Singleton(const Singleton&) = delete;
    Singleton& operator=(const Singleton&) = delete;

public:
    // 提供获取实例的静态方法
    static Singleton& getInstance() {
        static Singleton instance;  // 局部静态变量,保证实例只创建一次
        return instance;
    }

    void showMessage() const {
        std::cout << "Hello from Singleton!" << std::endl;
    }
};

int main() {
    // 获取单例实例并调用方法
    Singleton& singleton1 = Singleton::getInstance();
    singleton1.showMessage();

    // 再次获取单例实例并调用方法
    Singleton& singleton2 = Singleton::getInstance();
    singleton2.showMessage();

    // 检查两个实例是否是同一个
    if (&singleton1 == &singleton2) {
        std::cout << "Both instances are the same." << std::endl;
    } else {
        std::cout << "Instances are different." << std::endl;
    }

    return 0;
}
解释:

1.私有构造函数:构造函数是私有的,这样外部代码无法直接创建 Singleton 对象。

2.静态 getInstance() 方法:getInstance() 方法是唯一可以获取 Singleton 实例的入口。它返回 Singleton 类的一个静态局部实例,这样确保实例只有一个,并且在第一次调用时创建。C++ 中的静态局部变量会在第一次访问时初始化,并且在程序结束时自动销毁。

3.禁止拷贝和赋值:通过删除拷贝构造函数和赋值运算符,防止对象被复制。

线程安全的实现(C++11及以上)

上面的实现是线程安全的,因为局部静态变量在 C++11 中是线程安全的。在 C++11 标准中,局部静态变量的初始化是线程安全的,即使多个线程同时访问 getInstance(),也不会创建多个实例。

单例模式的变种:懒汉式与饿汉式

懒汉式:实例在第一次使用时创建。需要考虑线程安全。

饿汉式:在程序启动时就创建实例,不管是否需要。简单且线程安全,但如果实例的创建成本较高,可能会浪费资源。

1. 懒汉式实现(线程安全)
#include <iostream>
#include <mutex>

class Singleton {
private:
    Singleton() {
        std::cout << "Singleton created!" << std::endl;
    }

    Singleton(const Singleton&) = delete;
    Singleton& operator=(const Singleton&) = delete;

    static std::mutex mutex;  // 保护实例的互斥锁

public:
    static Singleton* getInstance() {
        static Singleton* instance = nullptr;

        // 双重检查锁定,确保线程安全且避免不必要的加锁
        if (instance == nullptr) {
            std::lock_guard<std::mutex> lock(mutex);
            if (instance == nullptr) {
                instance = new Singleton();
            }
        }
        return instance;
    }

    void showMessage() const {
        std::cout << "Hello from Singleton!" << std::endl;
    }
};

std::mutex Singleton::mutex;  // 初始化静态成员 mutex

int main() {
    Singleton* singleton1 = Singleton::getInstance();
    singleton1->showMessage();

    Singleton* singleton2 = Singleton::getInstance();
    singleton2->showMessage();

    if (singleton1 == singleton2) {
        std::cout << "Both instances are the same." << std::endl;
    }

    return 0;
}
解释:

1.懒汉式实现:实例只有在第一次访问时才会被创建(即 "懒加载")。使用 std::mutex 来保护实例的创建,以确保在多线程环境中只有一个实例。

2.双重检查锁定:通过 if (instance == nullptr) 进行第一次检查,如果仍然是 nullptr,才加锁创建实例。这样避免了每次获取实例时都加锁,提高了性能。

2. 饿汉式实现
#include <iostream>

class Singleton {
private:
    // 私有构造函数
    Singleton() {
        std::cout << "Singleton created!" << std::endl;
    }

    Singleton(const Singleton&) = delete;
    Singleton& operator=(const Singleton&) = delete;

    static Singleton instance;  // 在程序启动时就创建实例

public:
    static Singleton& getInstance() {
        return instance;
    }

    void showMessage() const {
        std::cout << "Hello from Singleton!" << std::endl;
    }
};

// 定义静态成员变量
Singleton Singleton::instance;

int main() {
    Singleton& singleton1 = Singleton::getInstance();
    singleton1.showMessage();

    Singleton& singleton2 = Singleton::getInstance();
    singleton2.showMessage();

    if (&singleton1 == &singleton2) {
        std::cout << "Both instances are the same." << std::endl;
    }

    return 0;
}
解释:

1.饿汉式实现:实例在程序启动时就被创建,并且是线程安全的,因为静态成员 instance 会在程序加载时初始化。

2.没有延迟创建:实例在程序启动时就创建,无论是否需要,可能会浪费资源。

总结

1.懒汉式(Lazy Initialization):

        实例延迟创建,直到第一次访问时。

        需要考虑线程安全,可以使用 std::mutex 或 C++11 中的线程安全局部静态变量。

        优点:实例创建时机可控,节省资源。

        缺点:需要额外的线程同步机制来保证线程安全。

2.饿汉式(Eager Initialization):

        实例在程序启动时就创建。

        简单且线程安全,但可能浪费资源,尤其是当实例创建代价较高时。

在大多数情况下,懒汉式更为灵活,尤其是当实例创建过程可能比较耗时或者实例未必每次都会使用时。使用静态局部变量的懒汉式在 C++11 及以上版本中非常推荐,它既是线程安全的,又实现了延迟加载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/940848.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Webpack学习笔记(4)

1.缓存 可以通过命中缓存降低网络流量&#xff0c;是网站加站速度更快。 然而在部署新版本时&#xff0c;不更改资源的文件名&#xff0c;浏览器可能认为你没有更新&#xff0c;所以会使用缓存版本。 由于缓存存在&#xff0c;获取新的代码成为问题。 接下来将配置webpack使…

java抽奖系统(八)

9. 抽奖模块 9.1 抽奖设计 抽奖过程是抽奖系统中最重要的核⼼环节&#xff0c;它需要确保公平、透明且⾼效。以下是详细的抽奖过程设计&#xff1a; 对于前端来说&#xff0c;负责控制抽奖的流程&#xff0c;确定中奖的人员 对于后端来说&#xff1a; 接口1&#xff1a;查询完…

VulnHub靶场渗透之:Gigachad

环境搭建 VulnHub是一个丰富的实战靶场集合&#xff0c;里面有许多有趣的实战靶机。 本次靶机介绍&#xff1a;http://www.vulnhub.com/entry/gigachad-1,657/ 下载靶机ova文件&#xff0c;导入虚拟机&#xff0c;启动环境&#xff0c;便可以开始进行靶机实战。 虚拟机无法分…

解决Apache/2.4.39 (Win64) PHP/7.2.18 Server at localhost Port 80问题

配置一下apache里面的配置文件&#xff1a;httpd.conf 和 httpd.vhosts.conf httpd.conf httpd-vhosts.conf 重启服务 展示&#xff1a; 浏览器中中文乱码问题&#xff1a;

.NET重点

B/S C/S什么语言 B/S&#xff1a; 浏览器端&#xff1a;JavaScript&#xff0c;HTML&#xff0c;CSS 服务器端&#xff1a;ASP&#xff08;.NET&#xff09;PHP/JSP 优势&#xff1a;维护方便&#xff0c;易于升级和扩展 劣势&#xff1a;服务器负担沉重 C/S java/.NET/…

Linux下基于最新稳定版ESP-IDF5.3.2开发esp32s3入门任务间的通讯-消息队列【入门四】

继续上一篇任务创建 【Linux下基于最新稳定版ESP-IDF5.3.2开发esp32s3入门任务间的通讯-信号量【入门三】-CSDN博客】 今天要实现消息队列进行任务的通讯 一、从上一篇信号量通讯demo拷贝一份重命名&#xff0c;还是之前的两个任务&#xff0c;重命名了。 xTaskCreatePinned…

【AI日记】24.12.22 容忍与自由 | 环境因素和个人因素

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】【AI日记】 工作 内容&#xff1a;看 OpenAi 这周的发布会和其他 AI 新闻&#xff0c;大佬视频时间&#xff1a;3 小时 读书 书名&#xff1a;富兰克林自传时间&#xff1a;1 小时评估&#xff1a;读完&#xff0c;总体…

穷举vs暴搜vs深搜vs回溯vs剪枝系列一>电话号码的字母组合

题目&#xff1a; 解析&#xff1a; 代码&#xff1a; private String[] hash {"","","abc","def","ghi","jkl","mno","pqrs","tuv","wxyz"};private StringBuffer p…

设计模式 -- 单例模式

设计模式 -- 单例模式 单例模式C++ 实现饿汉式单例模式懒汉式单例模式使用静态局部变量实现懒汉式单例模式(推荐)使用call_once实现懒汉式单例模式(推荐)使用静态全局部变量和指针的方式实现懒汉式单例模式(不推荐)双重检测懒汉式单例模式单例模式 单例模式:确保在整个程…

CH430N 插上电脑无反应

电路图&#xff0c;此处我用的是3.3V供电&#xff0c;现象就是插上USB,电脑没有反应。搜索也搜索不到 抄板请看自己是多少V供电 后来看到也有类似的 换了芯片后就好了。md新板子第一个芯片就是坏的&#xff0c;服了。

重拾设计模式--状态模式

文章目录 状态模式&#xff08;State Pattern&#xff09;概述状态模式UML图作用&#xff1a;状态模式的结构环境&#xff08;Context&#xff09;类&#xff1a;抽象状态&#xff08;State&#xff09;类&#xff1a;具体状态&#xff08;Concrete State&#xff09;类&#x…

【MySQL】深入了解索引背后的内部结构

目录 索引的认识&#xff1a; 作用&#xff1a; 索引的使用&#xff1a; 索引底层的数据结构&#xff1a; 哈希表 AVL树 红黑树 B树&#xff1a; B树&#xff1a; B树搜索&#xff1a; 索引的认识&#xff1a; 索引是数据库中的一个数据结构&#xff0c;用于加速查询…

【MySQL】--- 数据类型

Welcome to 9ilks Code World (๑•́ ₃ •̀๑) 个人主页: 9ilk (๑•́ ₃ •̀๑) 文章专栏&#xff1a; MySQL &#x1f3e0; 数据类型分类 MySQL是一套整体的对外数据存取方案,既然要存取数据,而数据有不同的类型,因此MySQL也存在不同的数据类型,有不同的用…

电商店铺数据集成到金蝶云星辰V2的实践经验分享

电商店铺数据集成到金蝶云星辰V2的技术案例分享 在电商业务快速发展的背景下&#xff0c;如何高效地将聚水潭平台上的电商店铺数据集成到金蝶云星辰V2系统中&#xff0c;成为了许多企业面临的重要挑战。本文将详细探讨一个实际运行的解决方案——“电商店铺->金蝶客户”&am…

在VBA中结合正则表达式和查找功能给文档添加交叉连接

在VBA中搜索文本有两种方式可用&#xff0c;一种是利用Range.Find对象&#xff08;更常见的形式可能是Selection.Find&#xff0c;Selection是Range的子类&#xff0c;Selection.Find其实就是特殊的Range.Find&#xff09;&#xff0c;另一种方法是利用正则表达式&#xff0c;但…

大腾智能CAD:国产云原生三维设计新选择

在快速发展的工业设计领域&#xff0c;CAD软件已成为不可或缺的核心工具。它通过强大的建模、分析、优化等功能&#xff0c;不仅显著提升了设计效率与精度&#xff0c;还促进了设计思维的创新与拓展&#xff0c;为产品从概念构想到实体制造的全过程提供了强有力的技术支持。然而…

实现Python将csv数据导入到Neo4j

目录 一、获取数据集 1.1 获取数据集 1.2 以“记事本”方式打开文件 1.3 另存为“UTF-8”格式文件 1.4 选择“是” 二、 打开Neo4j并运行 2.1 创建新的Neo4j数据库 2.2 分别设置数据库名和密码 ​编辑 2.3 启动Neo4j数据库 2.4 打开Neo4j数据库 2.5 运行查看该数据库…

MySQL知识汇总(二):select

select语句 -- select语句 select 字段 from 表 -- 查询全部信息 select * from 表 SELECT * FROM student2 -- 查询指定字段 select name from 表 SELECT name FROM student2 -- 起别名 给查询结果用 AS 起个其他的名字&#xff0c;可以是字段也可以是表 SELECT name AS 名字 …

Restaurants WebAPI(二)——DTO/CQRS

文章目录 项目地址一、DTO1.1 创建Restaurant的Dto1.2 修改之前未使用Dto的接口1.2.1 修改GetRestaurantByIdUseCase1.2.2 修改IGetRestaurantByIdUseCase接口1.2.3 再次请求接口1.3 显示Dish List1.3.1创建DishDto1.3.2 在RestaurantDto里添加DishDto1.3.3 使用Include添加Dis…

c++--------c++概念

定义与起源 C是一种高级编程语言&#xff0c;它是C语言的扩展。C由Bjarne Stroustrup在20世纪80年代初开发&#xff0c;最初被称为“C with Classes”。其设计目的是在保持C语言高效性的同时&#xff0c;增加面向对象编程&#xff08;OOP&#xff09;的特性。例如&#xff0c;…