澳鹏干货 | 大语言模型的上下文窗口 (Context Windows)

大语言模型(LLMs)极大地提升了人工智能在理解和生成文本方面的能力。其中一个影响其效用的重要方面是“上下文窗口”(Context Windows)—— 这个概念直接影响着模型接收和生成语言的有效性。

本期澳鹏干货将深入探讨上下文窗口对人工智能模型应用的影响,及引入检索增强生成(RAG)方法的重要性。

什么是上下文窗口

在大语言模型领域,上下文窗口(Context Windows)是指模型在生成或理解语言时可以接收的文本量,或模型可以处理的token数,在确保模型做出连贯且与上下文相关的响应或分析方面至关重要。

上下文窗口的大小直接影响模型在处理信息时可以利用的前后文信息或生成回复时的token数量。

图片

在大模型中,一个token可以是一个汉字/字母、一个词或一个标点符号,因此上下文窗口表示模型在一次输入中可以处理的最大字符数或词数。

在任何时候,输入和输出的token总数不能超过上下文窗口的最大长度限制,例如gpt-3.5-turbo-instruct模型最大上下文窗口的长度是4,096个tokens。

而GPT-4o的上下文窗口可以达到128,000个tokens,国产大模型KIMI更是达到了200万的tokens。这使得大模型可以在单次交互中处理和生成更长、更复杂的文本。

图片

对AI模型应用的影响

上下文窗口大小对于需要深入理解长文本或生成大量内容的AI应用至关重要。较大的上下文窗口能够产生更细致和连贯的输出,因为模型在响应之前可以考虑到更多的信息。这对于文档摘要、内容创作和复杂的问答系统尤其重要。

图片

长上下文窗口的作用包括:

理解上下文:较大的上下文窗口可以帮助模型更好地理解用户输入的上下文,从而生成更相关和连贯的响应。例如在对话中,模型可以参考更早的对话内容,以提供更准确的回答。

生成长文本:在生成长篇文章、故事或报告时,较大的上下文窗口允许模型保持连贯性和一致性,以避免在较长的文本中出现前后矛盾的情况。

复杂任务处理:对于复杂的任务,如代码生成、论文写作、长篇问答等,较大的上下文窗口能让模型处理更多的信息,从而提高完成任务的质量和准确性。

图片

然而,较大的上下文窗口需要更多的计算能力和内存,这在性能和资源效率之间形成了一种权衡。因此,部署大语言模型的企业需要根据其特定需求和限制来平衡这些因素。

RAG + 人类 = 更高性能的AI

在上下文窗口中,检索增强生成(RAG)概念引入了一种创新方法来扩展模型处理信息的能力。

RAG模型将大语言模型的生成能力与动态检索外部文档的实时能力相结合。这意味着,即使模型的直接上下文窗口有限,也可以在生成过程中通过外部来源引入相关数据来访问上下文信息,然后将相关信息块作为上下文提供给大语言模型。

这种方法显著提升了模型产生准确、有根据且上下文丰富的响应的能力,特别是在答案可能取决于内部知识库内容的场景中。

RAG(Retrieval Augmented Generation / 检索增强生成)巧妙融合了检索式模型的精准和生成模型的创造力,不仅能理解问题,还能在海量数据中找到针对性的答案,并用人类的语言告诉你。

通过人工监督,可以纠正数据中的错误,并确保检索到的信息相关性,从而为模型开发提供更准确、更符合应用场景的响应。人工反馈还可以实现自适应学习,使模型能够动态调整以适应复杂的数据场景,并通过持续迭代不断改进。

上下文窗口的有效使用

应用需求

上下文窗口大小的选择应与人工智能应用的需求相一致。对于RAG架构,这包括考虑给定数量标记块的数量,作为提供给模型的上下文。

运营成本

较大的上下文窗口和添加RAG机制会增加计算负载。企业需要考虑可用资源,并优化模型架构或为模型匹配合适的窗口大小和检索能力。

模型训练和微调

用上下文窗口训练大语言模型需要大量资源。然而,用特定领域的数据和强大的RAG知识库来优化这些模型可以提高性能并优化上下文的使用。澳鹏Appen专注于在效率和成本之间实现这种平衡。

模型的上下文窗口是大语言模型设计和部署的关键方面。检索增强生成 (RAG) 的引入进一步扩展了大语言模型的潜力,使模型能够搜集并整合更广泛、有效的信息。

随着企业持续探索AI应用前沿,理解和优化上下文窗口的使用和检索机制对于开发更复杂的AI应用至关重要。澳鹏Appen提供训练和微调这些模型所需的高质量数据和专业知识,确保它们能够满足人工智能应用不断变化的各种需求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/892781.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】增删改查-进阶(一)

目录 🌴数据库约束 🚩约束类型 🚩NOT NULL 🚩UNIQUE 🚩DEFAULT 🚩PRIMARY KEY 🚩FOREIGN KEY 🚩CHECK 🎄表的设计 🚩一对一 🚩一对多 …

JavaWeb合集07-MyBatis

七、MyBatis MyBatis是一款优秀的持久层(dao)框架,用于简化JDBC的开发。 MyBatis本是Apache的一个开源项目iBatis, 2010年这个项目由apache迁移到了google code,并且改名为MyBatis。2013年11月迁移到Github。 官网:https://mybati…

人工智能学习框架的探索与应用

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

Spark:DataFrame介绍及使用

1. DataFrame详解 DataFrame是基于RDD进行封装的结构化数据类型,增加了schema元数据,最终DataFrame类型在计算时,还是转为rdd计算。DataFrame的结构化数据有Row(行数据)和schema元数据构成。 Row 类型 表示一行数据 …

中文情感分析课程设计

中文情感分析 中文情感分析的实质是文本分类问题,本项目分别采用CNN和BI-LSTM两种模型解决文本分类任务,并用于情感分析,达到不错的效果。 两种模型在小数据集上训练,在验证集的准确率、号回率及F1因子均接近90% 项目设计的目标…

短链接能有多短?颠覆你的认知

在我们平时的网络活动中,经常会遇到需要将长链接缩短的情况。有细心的小伙伴会发现,平时收到的短信里面都会携带一个很短的链接,这就是将长链接缩短之后的效果。 缩短链接的主要目的有两个:一是使链接更加简洁美观;二…

基于SSM的网上拍卖平台

文未可获取一份本项目的java源码和数据库参考。 1. 选题背景 网络在人们的日常生活所占的比重越来越重,人们对网络信息的依赖性也越来越高。为用户提供良好的网络服务,可以给用户带来便捷的同时,也为网络服务开发商带来了客观的收益。当前&…

4-20mA采集卡 USB温度采集卡 USB热电偶采集 USB5601多功能采集卡

阿尔泰科技 型号:USB5601 概述: 产品外形图: 外形尺寸图: 主要指标: 8 路差分模拟量采集、8 路隔离数字量输入和 8 路隔离数字量输出 要了解更多技术和产品知识关注我吧!

最大公共子序列c++

最大公共子序列c 概念基本的概念 递归算法代码优化map基础优化代码 概念 基本的概念 子序列: 由原序列中若干个元素组成,元素可以不连续,但和原序列的顺序一致。最长公共子序列: 一个序列即是甲序列的子序列,也是乙序…

DNDC模型下载与安装;土壤碳储量;点尺度和区域尺度模拟;气象数据、土地数据、土壤数据处理、农田减排潜力分析、温室气体排放分析等

实现美丽中国建设目标,“双碳”行动将会发挥非常重要的作用。碳循环的精确模拟是实现“双碳”行动的关键。DNDC(Denitrification-Decomposition,反硝化-分解模型)是目前国际上最为成功的模拟生物地球化学循环的模型之一&#xff0…

spark:Structured Streaming介绍

文章目录 1. Structured Streaming介绍1.1 实时计算和离线计算1.1.1 实时计算1.1.2 离线计算 1.2 有界和无界数据 2. 简单使用3. 编程模型4. 数据处理流程4.1 读取数据Source4.1.1 文件数据处理 4.2 计算操作 Operation4.3 数据输出 Sink4.3.1 输出模式4.3.2 指定输出位置4.3.3…

Html/Vue浏览器下载并重命名文件

Html/Vue浏览器下载并重命名文件 row是上方图片的数据对象 download(row) {const link document.createElement(a);link.style.display none;// 设置下载地址link.setAttribute(href, row.url);// 设置文件名(这里可以重新设置名字,下载之后的文件就是你重新命名…

【数据结构与算法】链表(上)

记录自己所学&#xff0c;无详细讲解 无头单链表实现 1.项目目录文件 2.头文件 Slist.h #include <stdio.h> #include <assert.h> #include <stdlib.h> struct Slist {int data;struct Slist* next; }; typedef struct Slist Slist; //初始化 void SlistI…

死锁和活锁和线程饥饿

死锁 死锁是指两个或两个以上的线程在执行过程中&#xff0c;因争夺资源而造成的一种相互等待的现象&#xff0c;若无外力作用&#xff0c;它们都将无法推进下去。 原因&#xff1a;两个或两个以上的线程共同访问两个或多个相同的资源&#xff08;如对象锁&#xff09;&#…

Unity使用TriangleNet参考

TriangleNet下载如下&#xff1a; TriangleNet 效果如下&#xff1a; 代码参考如下&#xff1a; using System.Collections.Generic; using UnityEngine; using TriangleNet.Geometry;public class TestTriangleNet : MonoBehaviour {[SerializeField]Material material;voi…

耳夹式耳机哪个品牌音质好?五大优质音质的耳夹式耳机!

随着健康理念的传播&#xff0c;运动健身成为大众追求高品质生活的重要部分。传统耳机在运动场景下有局限性&#xff0c;稳定性差、清洁不便&#xff0c;影响运动体验。这时&#xff0c;耳夹式耳机出现&#xff0c;以独特设计和传音方式重塑运动音乐享受&#xff0c;无需入耳&a…

游戏推荐业务中基于 sentinel 的动态限流实践

作者&#xff1a;来自 vivo 互联网服务器团队- Gao Meng 本文介绍了一种基于 sentinel 进行二次开发的动态限流解决方案&#xff0c;包括什么是动态限流、为什么需要引入动态限流、以及动态限流的实现原理。 一、背景 1.1 当前的限流方案 随着互联网的发展及业务的增长&…

Flythings学习(四)串口通信

文章目录 1 串口编程基本步骤1.1 打开串口1.2 配置串口 1.3 读串口1.4 发送串口1.5 关闭串口 2 综合使用3 如何在软件上保证串口稳定通信4 flythings中的串口通讯5 协议接收部分使用和修改方法6 通讯协议数据怎么和UI控件对接 1 串口编程基本步骤 串口通信有5个步骤 1.打开串口…

Telegram——Bot 机器人/小程序入门指南

一、Bot 介绍 在 TG 中,机器人可以用于接收和发送消息、管理群组(在有权限的情况下可以封禁用户、删除消息、置顶消息等)、通过API进行编程操作、使用 Inline 查询功能在不同的聊天室中提供查询服务、创建自定义键盘按钮、发出账单并收款、接入小程序游戏等。 然而,Bot 默…

单片机中断概念以及示例

中断允许控制寄存器 CPU对中断系统所有中断以及某个中断源的开放和屏蔽是由中断允许寄存器IE控制的。 EX0(IE.0)&#xff0c;外部中断0允许位&#xff1b;EX01&#xff0c;打开外部中断0中断&#xff1b;EX00关闭外部中断0中断。 ET0(IE.1)&#xff0c;定时/计数器T0中断允许…