【核磁共振成像】方格化重建

目录

  • 一、缩放比例
  • 二、方格化变换的基础
  • 三、重建时间
  • 四、方格化核


一、缩放比例

  对于笛卡尔K空间直线轨迹数据可直接用FFT重建,而如果K空间轨迹的任何部分都是非均匀取样的 可用DFT直接重建,有时称为共轭相位重建,但此法太慢不实用。把数据再取样到直线格使能FFT重建要快得多普遍应用的内插方法是把数据与一个平滑函数卷积再取样,这个 重建过程(包括FFT) 被称为 方格化
  方格化在K空间中用一个卷积转换输入数据到一个均匀直线格数据集,因自选密度本身是紧支的(即有限区域外都是零),只要测量值是大于或等于奈奎斯特频率采样的,任意位置的K空间值都可以被测量值的sinc内插精确计算(即测量的K空间值与sinc函数卷积)。
  sinc内插的缺点是sinc函数不是紧支的。因此,在每个新K空间位置计算K空间值,要求sinc函数被所有测量的数据乘,导致比较长的计算时间
  在方格化中,sinc函数被一个紧支函数(方格化核)取代以节省计算时间K空间数据与方格化核卷积等价于图像被核的FT乘
  sinc卷积方格化导致些许图像质量损失,因为再取样卷积的K空间导致一个带有混叠的图像。通常通过K空间过取样以增大FOV(把直线混叠的复制进一步推离开推向),以降低混叠,然后在FT后放弃额外的FOV。
在这里插入图片描述
  左为模拟的spiral扫描图像,显示有混叠伪影
  混叠延申到无限远,即使显示的截面有限(方框是扫描中指定的FOV)。
  右为从左图(尚无直线再取样)的K空间数据的内插产生的图像
  如果对应于左图的K空间数据与一紧支函数而不是sinc卷积,混叠伪影就不会被截去

  径向投影MR数据也可以用CT中常用的滤波背投影算法,但此法在MRI中不受欢迎。对一个离散数据集再取样问题已经发展了许多方法,直接内插会导致伪影基于卷积的方法比如方格化在MRI中被广泛使用,因为它比其他方法快,并且能给出足够好的图像质量。

  所谓 两个函数的卷积,本质上就是先将一个函数翻转,然后进行滑动叠加在连续情况下叠加指的是对两个函数的乘积求积分在离散情况下就是加权求和,为简单起见就统一称为叠加。卷积的“卷”,指的的函数的翻转,从 g(t) 变成 g(-t) 的这个过程;同时,“卷”还有滑动的意味在里面。如果把卷积翻译为“褶积”,那么这个“褶”字就只有翻转的含义了。卷积的“积”,则指的是积分/加权求和

  以信号分析为例,卷积的结果是不仅跟当前时刻输入信号的响应值有关,也跟过去所有时刻输入信号的响应都有关系,考虑了对过去的所有输入的效果的累积。在图像处理中,卷积处理的结果,其实就是把每个像素周边的,甚至是整个图像的像素都考虑进来,对当前像素进行某种加权处理。所以说,“积”是全局概念,或者说是一种“混合”,把两个函数在时间或者空间上进行混合。
  进行“卷”(翻转)的目的其实是施加一种约束,它指定了在“积”的时候以什么为参照。在信号分析的场景,它指定了在哪个特定时间点的前后进行“积”,在空间分析的场景,它指定了在哪个位置的周边进行累积处理。


二、方格化变换的基础

  方格化所需要的步骤为:
  (1)对各个输入数据点计算K空间位置和密度补偿。
  (2)计算方格化核及其反傅里叶变换,存储方格化核作为一个查找表或者对各个输入、输出数据样本存储值。
  (3)如果需要,从输入数据减去基线
  (4)准备一个待输出K空间矩阵,对各个输入数据样本在输入点的紧支距离内找出所有均匀直线输出位置。
  (5)应用一个K空间窗和符号交替到再取样的直线K空间数据上。
  (6)反傅里叶变换均匀直线再取样的K空间数据上。
  (7)如果K空间过取样用于降低混叠,提取图像的中间位置相应于所希望的最终FOV
  (8)用方格化核的反傅里叶变换除以中间像
  (9)如果需要实像或虚像,进行符号交替
  (10)计算最终图像,比例缩放。
在这里插入图片描述

方格化流程,包括用FFT的图像重建

  方格化是一个局部过程,只需在原取样点附近执行
  为了节省计算时间,方格化核值通常不再对各个输出点计算。方格化核值只对相对小数量点计算,比如256点,并存在一个查找表中。如果同样的K空间轨迹用于重复的重建,并且有足够多存储器的话,第一个像之后所有像的重建时间可通过查表而大大节省


三、重建时间

   方格化重建 可分为三步:卷积、FFT和被方格化核的IFT除
  卷积步乘法运算次数输入数据样本数Ns乘以位于各输入样本的距离w内的均匀直线位置数。如果w是用均匀直线样本的单位给定的,乘运算次数对于1D方格化是wNs,对2D方格化是w^2Ns,以此类推。

  例如 在傅里叶变换中,一个复数函数的实部和虚部分别对应着信号的振幅和相位。如果一个信号的傅里叶变换F(k)的共轭F*(k)等于F(-k),那么这个信号的相位是对称的,即F(k)和F*(k)相位相等。相位信息可以用来描述信号的时间演化和频率成分

  受敲击的鼓面振幅沿半径方向的分布就是一个贝塞尔函数(考虑正负号)。实际上,这些振动是各阶贝塞尔函数的叠加

  根据图像阵列的特性,对其按下列步骤进行FFT变换
  (1)将图像数据阵列变换为按列存储,即从下到上,从左到右;
  (2)对每一列图像数据进行1-D FFT;
  (3)将按列处理后的数据结果存储,并对它们按原图像阵列的形式,即按行重新存储;
  (4)对重新排列的数据逐行进行1-D FFT;
  (5)将每行处理后的数据存储起来,即得到2-D 数字图像FFT结果。

  关于离散傅里叶变换变换:
  (1)实数信号变换的结果X[k]是一组复数,里面一半数据和另一半是共轭的。意味着N点DFT,只有N/2的数据是含有有用信息的。
  (2)用DFT的结果如何做频谱分析,即在采样频率为fs的情况下, x[n]的n只是一个离散的数值。


四、方格化核

  最佳1D方格化核g(K)是Kaiser-Bessel函数,在终像最逼近理想像(例如用共轭相位重建)的意义上说,Kaiser-Bessel函数作为方格化核能给出最佳结果
在这里插入图片描述
  (a)图为Kaiser-Bessel函数(任意单位)作为K空间距离(以K空间为单位)的函数
  (b)图为Kaiser-Bessel函数(任意单位)的反傅里叶变换曲线作为图像视野L的函数,Kaiser-Bessel函数参数w=4,b=8

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/89252.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

在VS中使用格式化工具

在VS中使用格式化工具 官网地址: https://clang.llvm.org/ 最后更新时间:2023.8.25 这里以windows为例,使用的环境为VS。 (一)下载安装LLVM 下载地址: https://github.com/llvm安装(自己选择安装路径) &…

伦敦金走势图行情值得关注

不知道大家是否了解过伦敦金这个投资品种,或者有否财经网站以及金融终端上看到过它的行情走势图。其实,伦敦金并不是一种实实在在的黄金,而是一种跟踪伦敦现货黄金市场价格走势的黄金保证金交易品种,它每天的行情走势变化&#xf…

安科瑞AMB300系列母线槽红外测温解决方案监测母线槽连接处温度-安科瑞黄安南

一、行业背景 随着当今社会的发展和用电量的急剧上升,现代化工程设施和装备的涌现,封闭式母线即母线槽因方便、节能、载流量大、机械强度高 、安装灵活、寿命长等特点,逐渐取代传统电缆,广泛应用于室内变压站、高层建筑和大型厂房…

基于spring boot校园疫情信息管理系统/疫情管理系统

摘要 随着计算机技术,网络技术的迅猛发展,Internet 的不断普及,网络在各个领域里发挥了越来越重要的作用。特别是随着近年人民生活水平不断提高,校园疫情信息管理系统给学校带来了更大的帮助。 由于当前疫情防控形势复杂&#xff…

2023年国赛 高教社杯数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…

RTSP/Onvif视频服务器EasyNVR安防视频云服务调用接口录像会被自动删除的问题解决方案

EasyNVR安防视频云服务是基于RTSP/Onvif协议接入的视频平台,可支持将接入的视频流进行全平台、全终端的分发,分发的视频流包括RTSP、RTMP、HTTP-FLV、WS-FLV、HLS、WebRTC等。平台丰富灵活的视频能力,可应用在智慧校园、智慧工厂、智慧水利等…

使用ELK(ES+Logstash+Filebeat+Kibana)收集nginx的日志

文章目录 Nginx日志格式修改配置logstash收集nginx日志引入Redis收集日志写入redis从redis中读取日志 引入FilebeatFilebeat简介Filebeat安装和配置 配置nginx转发ES和kibanaELK设置账号和密码 书接上回:《ELK中Logstash的基本配置和用法》 Nginx日志格式修改 默认…

编写Dockerfile制作自己的镜像并推送到私有仓库

说明:我将用到的私有仓库是Harbor,安装教程参考我的这一篇文章: 安装搭建私有仓库Harbor_Word_Smith_的博客-CSDN博客 一、案例1 1、要求 编写Dockerfile制作Web应用系统nginx镜像,生成镜像nginx:v1.1,并推送其到私…

资深网络工程师的网络排障全过程,太强了!【附工具下载】

下午好,我的网工朋友 我们知道,交换机是局域网中一种很重要的网络设备,它的工作状态与客户端系统的上网状态息息相关。 可是,在实际工作过程中,交换机的状态很容易受到外界的干扰,那样一来局域网中就会出…

wazuh

1.wazuh的作用 Wazuh 是一个免费的开源安全平台,统一了 XDR 和 SIEM 功能。它可以保护本地、虚拟化、容器化和基于云的环境中的工作负载。Wazuh 帮助组织和个人保护其数据资产免受安全威胁。它被全球数千个组织广泛使用,从小型企业到大型企业。 Wazuh的…

物联网(IoT)安全挑战与解决方案: 分析物联网设备面临的安全威胁,以及如何设计和管理安全的IoT生态系统

第一章:引言 随着科技的飞速发展,物联网(IoT)作为连接世界的桥梁,已经成为现代社会不可或缺的一部分。然而,随着IoT设备数量的不断增加,其安全问题也日益显著。本文将深入探讨IoT领域面临的安全…

opencv 文档识别+UI界面识别系统

目录 一、实现和完整UI视频效果展示 主界面: 识别结果界面: 查看处理图片过程: 查看历史记录界面: 二、原理介绍: 将图像变换大小->灰度化->高斯滤波->边缘检测 轮廓提取 筛选第三步中的轮廓&#xf…

计算机终端核心安全配置规范

声明 本文是学习 政务计算机终端核心配置规范. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 范围 本标准提出了政务计算机终端核心配置的基本概念和要求,规定了核心配置的自动化实现方法,规范了核心配置实施流程。 本标准适…

java使用swing制作桌面图形应用的实例教程

本篇文章主要讲解,java编程语言通过swing制作桌面图形应用的实例教程,通过一个简单的个人信息提交表单界面,让你了解swing的布局管理、窗口图标设置、编译和运行以及窗口菜单的设置。 日期:2023年8月25日 实际效果 弹出新窗口帮助…

python+django+mysql旅游景点推荐系统-前后端分离(源码+文档)

系统主要采用Python开发技术和MySQL数据库开发技术以及基于OpenCV的图像识别。系统主要包括系统首页、个人中心、用户管理、景点信息管理、景点类型管理、景点门票管理、在线反馈、系统管理等功能,从而实现智能化的旅游景点推荐方式,提高旅游景点推荐的效…

美创科技荣获“2023年网络安全优秀创新成果大赛—杭州分站赛”两项优胜奖

近日,由浙江省互联网信息办公室指导、中国网络安全产业联盟(CCIA)主办,浙江省网络空间安全协会承办的“2023年网络安全优秀创新成果大赛-杭州分站赛”正式公布评选结果。 经专家评审,美创科技报名参赛的解决方案—“医…

CSS3盒模型+flex

1.盒模型 标准盒模型: wwidthpaddingborderhheightpaddingborder 怪异盒模型(ie盒模型) wwidth包含了(paddingborder)hheight包含了(paddingborder) 2.CSS3弹性盒(重点新版弹性盒) 弹性盒: 设置为弹性盒后,父元素为容器,子元素为项目弹性盒中存在两根轴,默认水平为主轴,垂…

java八股文面试[java基础]——异常

自定义异常: 异常Exception 是指程序运行时, 由于输入错误、网络、程序逻辑等原因导致运行时出现的问题。出现异常时,程序会暂时中断执行,并根据产生异常的原因,创建对应异常类型的异常对象,并抛出给JVM捕…

从零开始配置Jenkins与GitLab集成:一步步实现持续集成

在软件开发中,持续集成是确保高效协作和可靠交付的核心实践。以下是在CentOS上安装配置Jenkins与GitLab集成的详细步骤: 1.安装JDK 解压JDK安装包并设置环境变量: JDK下载网址 Java Downloads | Oracle 台灣 tar zxvf jdk-11.0.5_linux-x64_b…

LeetCode——二叉树篇(九)

刷题顺序及思路来源于代码随想录,网站地址:https://programmercarl.com 目录 669. 修剪二叉搜索树 108. 将有序数组转换为二叉搜索树 538. 把二叉搜索树转换为累加树 669. 修剪二叉搜索树 给你二叉搜索树的根节点 root ,同时给定最小边界…