树莓派应用--AI项目实战篇来啦-10.OpenCV进行车牌检测

1. 介绍

        本项目使用 esseract、OpenCV和Python探索光学字符识别(OCR)的神奇世界,本项目将
带你了解最受欢迎的OCR引擎 Tesseract 背后的技术,以及如何用 Pytesseract 和 OpenCV实现字符识别。
        从图像中检测字符的技术称为 OCR(光学字符识别),使用 Pytesseract 库很容易实现。

2.Python pytesseract 字符识别OCR库介绍

        Python 提供了支持 Tesseract-OCR 引擎的 Python 版本的库 pytesseract, pytesseract是一款用于光学字符识别(OCR)的python工具,即从图片中识别出和"读取"其中嵌入的文字。
pytesseract 是对 Tesseract-OCR的一层封装,同时也可以单独作为对 Tesseract 引擎的调用脚本,支持使用 PIL库(Python Imaging Library)读取各种图片文件类型,包括jpeg、png、gif、bmp、tiff 等其它格式。作为脚本使用时,pytesseract 将打印识别出的文字,而不是将其写入文件。

2.1 Pytesseract 字符识别库安装

sudo apt-get update 
sudo apt-get install libleptonica-dev 
sudo apt-get install tesseract-ocr 
sudo apt-get install libtesseract-dev 
pip3 install pytesseract 
pip3 install pillow

2.2 车牌识别相关操作

        1.车牌检测:第一步是从汽车上检测车牌所在位置。使用OpenCV中矩形的轮廓检测来寻找车牌,如果我们知道车牌的确切尺寸,颜色和大致位置,则可以提高准确性。通常,也会将根据摄像机的位置和该特定国家/地区所使用的车牌类型来训练检测算法。但是图像可能并没有汽车的存在,在这种情况下我们将先进行汽车的,然后是车牌。
        2.字符分割:检测到车牌后,必须将其裁剪并保存为新图像。同样,这可以使用OpenCV 来完成。
        3. 字符识别,在上一步中获得的新图像肯定可以写上一些字符(数字/字母)。因此,我们可以对其执行 OCR(光学字符识别)以检测数字。

3.源程序代码

import cv2
import imutils
import numpy as np
import pytesseract

img  = cv2.imread('./images/car2.jpg',cv2.IMREAD_COLOR)

img = cv2.resize(img, (600,400) )

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
gray = cv2.bilateralFilter(gray, 13, 15, 15)

edged = cv2.Canny(gray, 30, 200) 
contours = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
contours = imutils.grab_contours(contours)
contours = sorted(contours, key = cv2.contourArea, reverse = True)[:10]
screenCnt = None

# 载入显示库
def bgr8_to_jpeg(value, quality=75):
    return bytes(cv2.imencode('.jpg', value)[1])
    
import ipywidgets.widgets as widgets
from IPython.display import display
imagecar = widgets.Image(format='jpeg', width=600, height=400)
imageCropped = widgets.Image(format='jpeg', width=600, height=400)
display(imagecar)
display(imageCropped)

for c in contours:
    
    peri = cv2.arcLength(c, True)
    approx = cv2.approxPolyDP(c, 0.018 * peri, True)
 
    if len(approx) == 4:
        screenCnt = approx
        break

if screenCnt is None:
    detected = 0
    print ("No contour detected")
else:
     detected = 1

if detected == 1:
    cv2.drawContours(img, [screenCnt], -1, (0, 0, 255), 3)

mask = np.zeros(gray.shape,np.uint8)
new_image = cv2.drawContours(mask,[screenCnt],0,255,-1,)
new_image = cv2.bitwise_and(img,img,mask=mask)

(x, y) = np.where(mask == 255)
(topx, topy) = (np.min(x), np.min(y))
(bottomx, bottomy) = (np.max(x), np.max(y))
Cropped = gray[topx:bottomx+1, topy:bottomy+1]

text = pytesseract.image_to_string(Cropped, config='--psm 11')
print("programming_fever's License Plate Recognition\n")
print("Detected license plate Number is:",text)
img = cv2.resize(img,(500,300))
Cropped = cv2.resize(Cropped,(400,200))
# 显示图像
imagecar.value = bgr8_to_jpeg(img)
imageCropped.value = bgr8_to_jpeg(Cropped)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/892416.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

图(Java语言实现)

一、图的概念 顶点(Vertex):图中的数据元素,我们称之为顶点,图至少有一个顶点(非空有穷集合)。 边(Edge):顶点之间的关系用边表示。 1.图(Graph…

Python Django 数据库优化与性能调优

Python Django 数据库优化与性能调优 Django 是一个非常流行的 Python Web 框架,它的 ORM(对象关系映射)允许开发者以简单且直观的方式操作数据库。然而,随着数据量的增长,数据库操作的效率可能会成为瓶颈&#xff0c…

如何在Ubuntu上更改MySQL数据存储路径

文章目录 0 背景1 备份现有数据库数据2 停止 MySQL 服务3 复制现有的 MySQL 数据到新目录4 修改 MySQL 配置文件5 更新 AppArmor 或 SELinux 配置(如有启用)6. 修改 MySQL 系统文件中的 datadir7. 启动 MySQL 服务8. 验证更改参考资料 0 背景 在原先划分…

股市入门常见术语介绍

鉴于最近行情讨论火热,我也想借此平台,结合我大学时期身边同学老师的投资经历,写一篇交易入门术语简介。内容不多但是足以达到科普之用。 ​ 希望大家能谨慎对待投资,始终保持谦虚学习的态度。不要迷失在瞬息万变的金融市场&…

webstorm 编辑器配置及配置迁移

1.下载地址 WebStorm:JetBrains 出品的 JavaScript 和 TypeScript IDE 其他版本下载地址 2.安装 点击下一步安装,可根据需要是否删除已有版本 注意: 完成安装后需要激活 3.设置快捷键 以下为个人常用可跳过或根据需要设置 如&#xff1a…

满级抗摔续航王者,荣耀X60系列发布,起步价仅1199元

10月16日,荣耀X60系列暨荣耀平板新品发布会正式举办,荣耀X60 Pro、荣耀X60以及荣耀平板GT Pro、荣耀亲选耳机LCHSE X7e、荣耀亲选WhizKid儿童手表2 Pro等新品悉数亮相。其中,荣耀X60 Pro首次搭载6600mAh最大青海湖电池、绿洲护眼屏、双向北斗…

pta-7-6 学生类设计

题目要求: 设计一个类Student,并在Main类中生成Student类对象进行测试 1.对于Student类,设计私有属性name和age,并为每一个成员变量name和age设计其setXXX()和getXXX()方法,并对于s…

GPT-SOVIT模型部署指南

一、模型介绍 强大的小样本语音转换和文本转语音 WebUI。 具有以下特征: 零样本 TTS: 输入 5 秒的声音样本并体验即时文本到语音的转换。少量样本 TTS: 仅使用 1 分钟的训练数据对模型进行微调,以提高语音相似度和真实感。跨语…

【Oracle数据库进阶】001.SQL基础查询_查询语句

课 程 推 荐我 的 个 人 主 页:👉👉 失心疯的个人主页 👈👈入 门 教 程 推 荐 :👉👉 Python零基础入门教程合集 👈👈虚 拟 环 境 搭 建 :&#x1…

2023年五一杯数学建模C题双碳目标下低碳建筑研究求解全过程论文及程序

2023年五一杯数学建模 C题 双碳目标下低碳建筑研究 原题再现: “双碳”即碳达峰与碳中和的简称,我国力争2030年前实现碳达峰,2060年前实现碳中和。“双碳”战略倡导绿色、环保、低碳的生活方式。我国加快降低碳排放步伐,大力推进…

AUTOSAR_EXP_ARAComAPI的5章笔记(13)

☞返回总目录 5.4.7 事件(Events) 在骨架侧,服务实现负责通知事件的发生。如 5.4.2 RadarService Skeleton Class 所示,骨架为每个事件提供一个事件包装类的成员。骨架的事件包装类与代理的事件包装类看起来明显不同。 在骨架端…

[已解决]DockerTarBuilder永久解决镜像docker拉取异常问题

前阵子发现阿里云的docker加速镜像失效了(甚至连nginx都拉取不了),重新换了并且加多了网络上比较常用的dokcer加速源,可以解决一部分问题,但仍然有一些镜像的某个版本或一些比较冷的镜像就是拉取不了,原因未…

libaom 源码分析:aomdec.c 文件

aomdec.c 功能:libaom 项目完成视频解码过程的 demo文件位置:libaom/apps/aomdec.c函数关系 命令行说明 终端输入 ./aomdec --help,输出如下,展示如何使用方法。Usage: ./aomdec <options> filenameOptions:--help Show usage options and exit…

基于Springboot+Vue的小型民营加油站管理系统 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 这个系…

libaom 源码分析综述【持续更新】

libaom libaom 是 AOMedia&#xff08;开放媒体联盟&#xff09;开发的一个开源视频编解码器库&#xff0c;它是 AV1 视频压缩格式的参考实现&#xff0c;并被广泛用于多种生产系统中。libaom 支持多种功能&#xff0c;包括可扩展视频编码&#xff08;SVC&#xff09;、实时通信…

Linux权限和开发工具(1)

文章目录 1.Linux根目录的相关文件夹2.Linux软件管理器yum3.Linux编辑器-vim的基础使用1.命令模式下一些命令:有关光标的操作:有关复制删除的操作:有关字符替换的相关操作:有关注释的相关操作: 2.插入模式3.底行模式下一些命令:实现双窗口 4.vim命令 4.vim配置5.Linux编译器-gc…

架构设计笔记-9-软件可靠性

目录 知识要点 综合知识 案例分析 1.可靠性特性&#xff0c;软硬件可靠性对比 论文 1.论软件可靠性设计技术的应用 知识要点 软件架构需求过程主要是获取用户需求&#xff0c;标识系统中所要用到的构件&#xff0c;并进行架构需求评审。其中&#xff0c;标识构件又详细地…

AI周报(10.6-10.12)

AI应用-AI中医诊疗 AI中医诊疗通过整合中医“望、闻、问、切”的传统诊断方法&#xff0c;并结合现代AI技术&#xff0c;如自然语言处理和图像识别&#xff0c;来辅助医生进行更精准的诊断。 望诊&#xff0c;作为中医四诊之首&#xff0c;其精髓在于“司外揣内”。医者通过细致…

Java通过RAG构建专属知识问答机器人_超详细

RAG&#xff1a;融合检索与生成的文本精准生成技术 检索增强生成&#xff08;RAG&#xff09;是一种技术&#xff0c;它通过结合检索模型和生成模型来提高文本生成的准确性。具体来说&#xff0c;RAG首先利用检索模型从私有或专有的数据源中搜索相关信息&#xff0c;然后将这些…