观察者模式的思考

观察者模式由来

观察者模式(Observer Pattern)是一种行为型设计模式,它的起源可以追溯到20世纪90年代初,由设计模式四人帮(Erich Gamma, Richard Helm, Ralph Johnson 和 John Vlissides)在其著作《设计模式:可复用面向对象软件的基础》中首次提出。观察者模式用于解决对象之间的一对多依赖关系,当一个对象(被观察者)的状态发生改变时,所有依赖于它的对象(观察者)都会得到通知并自动更新。

概念

  1. 被观察者(Subject):定义一个接口,用于添加、删除和通知观察者。
  2. 观察者(Observer):定义一个接口,用于接收被观察者的通知并执行相应的操作。
  3. 具体被观察者(ConcreteSubject):实现被观察者接口,维护观察者列表,并在状态改变时通知所有观察者。
  4. 具体观察者(ConcreteObserver):实现观察者接口,具体实现接收到通知后的操作。

请在此添加图片描述

实现原理

观察者模式的核心原理是通过将对象间的依赖关系从硬编码转移到外部,使得一个对象(被观察者)可以在不通知其他对象的情况下更改其状态,然后在适当的时候通知所有依赖于它的对象(观察者)。这种解耦的设计方式使得代码更加灵活,易于扩展和维护。

我有一个朋友张三,他总是关心天气情况,每天会看天气预报,在这个过程中,天气预报(被观察者)和张三(观察者)之间就会存在一种依赖关系。当天气预报发生变化时,张三需要得到通知并及时更新自己的信息。

定义角色

  • 被观察者(Subject):天气预报。它包含了当前的天气状况以及未来一段时间内的天气预报信息。
  • 观察者(Observer):张三。他是一个依赖于天气预报信息的用户。

建立依赖关系

  • 张三订阅了天气预报服务,这样当他打开电视或查看手机时,就能接收到最新的天气预报信息。

事件通知机制

  • 天气预报服务会在天气状况发生变化时,或者新的预报信息生成时,触发通知机制。这个机制负责将最新的天气信息发送给所有订阅了服务的用户,包括张三。

更新策略

  • 张三在接收到天气预报信息后,会根据信息的内容更新自己的认知,比如决定是否要带伞、穿什么衣服等。

动态加入和退出

  • 如果张三决定不再订阅天气预报服务,他可以随时取消订阅。同样,如果张三从一个城市搬到另一个城市,他可以订阅新的城市的天气预报服务。

技术实现

首先,我们定义一个Subject接口和一个Observer接口:

// 被观察者
public interface Subject {
    void registerObserver(Observer observer);
    void removeObserver(Observer observer);
    void notifyObservers();
}

// 观察者
public interface Observer {
    void update(String message);
}

然后,我们创建一个WeatherForecast类作为被观察者,实现Subject接口:

import java.util.ArrayList;
import java.util.List;

public class WeatherForecast implements Subject {

    private List<Observer> observers = new ArrayList<>();
    private String message;

    public void setMessage(String message) {
        this.message = message;
        notifyObservers();
    }

    @Override
    public void registerObserver(Observer observer) {
        observers.add(observer);
    }

    @Override
    public void removeObserver(Observer observer) {
        observers.remove(observer);
    }

    @Override
    public void notifyObservers() {
        for (Observer observer : observers) {
            observer.update(message);
        }
    }
}

接下来,我们创建一个WeatherWatcher类作为观察者,实现Observer接口:

public class WeatherWatcher implements Observer {

    private String name;

    public WeatherWatcher(String name) {
        this.name = name;
    }

    @Override
    public void update(String message) {
        System.out.println(name + " received weather forecast: " + message);
    }
}

最后,我们在主函数中创建一个WeatherForecast对象和两个WeatherWatcher对象,并让它们订阅天气预报:

public static void main(String[] args) {
        WeatherForecast weatherForecast = new WeatherForecast();
        WeatherWatcher watcher1 = new WeatherWatcher("张三");
        WeatherWatcher watcher2 = new WeatherWatcher("李四");

        weatherForecast.registerObserver(watcher1);
        weatherForecast.registerObserver(watcher2);

        weatherForecast.setMessage("今天天气晴朗,温度适中。");
        weatherForecast.setMessage("明天将会有大雨,请携带雨具。");
}

运行这个程序,你会看到张三和李四都收到了天气预报的通知。

请在此添加图片描述

Spring 实现

定义事件类:首先,我们需要定义一个事件类,它将携带被观察者状态变化的信息。

package com.neo.design.observer;

import org.springframework.context.ApplicationEvent;

public class WeatherEvent extends ApplicationEvent {

    private String weatherInfo;

    public WeatherEvent(Object source, String weatherInfo) {
        super(source);
        this.weatherInfo = weatherInfo;
    }

    public String getWeatherInfo() {
        return weatherInfo;
    }
}

  1. 创建事件发布者:接下来,我们创建一个事件发布者,它将负责发布天气变更事件。在这个例子中,我们将使用Spring的ApplicationEventPublisher来发布事件。
import org.springframework.context.ApplicationEventPublisher;
import org.springframework.stereotype.Component;

@Component
public class WeatherEventPublisher {
    private final ApplicationEventPublisher publisher;

    public WeatherEventPublisher(ApplicationEventPublisher publisher) {
        this.publisher = publisher;
    }

    public void publishWeatherChangeEvent(String message) {
        publisher.publishEvent(new WeatherChangeEvent(message));
    }
}

创建事件监听器:然后,我们创建一个事件监听器,它将实现ApplicationListener接口,并重写onApplicationEvent方法。在这个方法中,我们将处理天气变更事件,并通知相关的观察者。

package com.neo.design.observer;

import org.springframework.context.ApplicationEventPublisher;
import org.springframework.stereotype.Component;

@Component
public class WeatherEventPublisher {

    private final ApplicationEventPublisher publisher;

    public WeatherEventPublisher(ApplicationEventPublisher publisher) {
        this.publisher = publisher;
    }

    public void publishWeatherChangeEvent(String message) {
        publisher.publishEvent(new WeatherChangeEvent(message));
    }
}

创建用户服务:我们还需要创建一个用户服务,它将负责管理用户的订阅信息,并在接收到天气变更事件时通知用户。

package com.neo.design.observer;

import org.springframework.stereotype.Service;

import java.util.ArrayList;
import java.util.List;

@Service
public class UserService {

    private final List<String> subscribers = new ArrayList<>();

    public void subscribe(String subscriber) {
        subscribers.add(subscriber);
    }

    public void notifySubscribers(String message) {
        for (String subscriber : subscribers) {
            System.out.println(subscriber + " received weather forecast: " + message);
        }
    }
}

创建控制器:最后,我们创建一个控制器,它将接收用户订阅请求和天气变更请求,并调用相应的服务来处理这些请求。

package com.neo.design.observer;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PostMapping;
import org.springframework.web.bind.annotation.RequestParam;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class WeatherForecastController {

    @Autowired
    private UserService userService;

    @Autowired
    private WeatherEventPublisher publisher;

    @PostMapping("/subscribe")
    public String subscribe(@RequestParam("subscriber") String subscriber) {
        userService.subscribe(subscriber);
        return "Subscriber added!";
    }

    @PostMapping("/update-weather")
    public String updateWeather(@RequestParam("message") String message) {
        publisher.publishWeatherChangeEvent(message);
        return "Weather updated!";
    }
}

通过以上设计,我们利用Spring Boot的事件机制和依赖注入特性实现了一个高效的观察者模式。

验证

新增一名观察者

请在此添加图片描述

设定一个被观察者所关注的消息。

请在此添加图片描述

执行功能,返回测试结果如下

请在此添加图片描述

总结

观察者模式(Observer Pattern)在软件工程设计中扮演着重要角色,观察者模式实现了发布者(主题)和订阅者(观察者)之间的松散耦合。发布者无需知道具体的订阅者是谁,只需要维护一个订阅者列表,并在状态变化时通知它们。这种解耦使得系统更具灵活性和可扩展性。通过观察者模式,添加或移除订阅者非常容易,不需要修改发布者的代码。只需实现观察者接口并注册或取消注册即可。这使得系统在需求变化或扩展时更易于维护。它适用于各种需要实时更新和异步处理的场景,提升了系统的响应能力和用户体验,是设计模式中一个非常实用且常用的模式。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/891801.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

KTH576X在智能手表行业表冠产品中的应用方案

行业需求 随着移动技术的发展&#xff0c;许多传统的电子产品也开始增加移动方面的功能&#xff0c;比如过去只能用来看时间的手表&#xff0c;现今也可以通过智能手机或家庭网络与互联网相连&#xff0c;显示来电信息和新闻、天气信息等内容。这类产品主要是为消费者在不方便…

【父子线程传值TransmittableThreadLocal使用踩坑-及相关知识拓展】

文章目录 一.业务背景二.TransmittableThreadLocal是什么&#xff1f;三.问题复现1.定义注解DigitalAngel2.定义切面3.TransmittableThreadLocal相关4.线程池配置信息5.Controller6.Service7.测试结果8.问题分析9 解决办法及代码改造10.最终测试&#xff1a; 四.与 ThreadLocal…

Web集群服务-代理和负载均衡

1. 概述 1. 用户----->代理--->Web节点,后面只有一个节点,一般使用的是nginx代理功能即可 2. 后面如果是集群需要使用nginx负载均衡功能 2. 代理分类 代理分类方向应用正向代理用户(服务器)-->代理--->外部(某网站)服务器通过代理实现共享上网/访问公网反向代理用…

数据结构~AVL树

文章目录 一、AVL树的概念二、AVL树的定义三、AVL树的插入四、AVL树的平衡五、AVL树的验证六、AVL树的删除七、完整代码八、总结 一、AVL树的概念 AVL树是最先发明的自平衡二叉查找树&#xff0c;AVL是⼀颗空树&#xff0c;或者具备下列性质的二叉搜索树&#xff1a;它的左右子…

《微软飞行模拟2024》在飞行中可能占用高达180 Mb/s的互联网带宽

《微软飞行模拟2024》是一款要求相当高的游戏。 从理想的系统规格所需的高性能系统来看&#xff0c;该游戏目前在用户飞行和地形加载时使用的网络带宽高达 180 Mb/s。 这相当于每小时耗费高达 81 GB 的网络数据&#xff0c;对于有数据上限的用户来说简直就是噩梦。 数据上限通…

[Python学习日记-47] Python 中的系统调用模块—— os 与 sys

[Python学习日记-47] Python 中的系统调用模块 简介 os sys 简介 os 模块和 sys 模块提供了很多允许你的程序与操作系统直接交互的功能。下面将进行逐一介绍。 os 一、os.getcwd() 得到当前工作目录&#xff0c;即当前 Python 脚本工作的目录路径&#xff08;绝对路径&#…

芝法酱学习笔记(0.7)——harbor与SpringBoot容器化docker部署

前言 之前我们主要讲的jar包部署。使用jar包部署可能导致不同服务互相争抢资源&#xff08;隔离性&#xff09;&#xff0c;不同服务可能需要不同的jdk环境&#xff0c;有时也会造成困扰。故在微服务时代&#xff0c;我们通常使用docker部署 一、docker安装 docke相关的知识…

sherpa-ncnn 语言模型简单对比

在昨天把系统搞崩溃前&#xff0c;对sherpa-ncnn的中文模型做了一个简单的对比。这次使用的分别是sherpa-ncnn-streaming-zipformer-bilingual-zh-en-2023-02-13&#xff08;以下简称bilingual-zh-en-2023-02-13&#xff09;和sherpa-ncnn-streaming-zipformer-small-bilingual…

WPF自定义控件实现的几种方法

Windows Presentation Foundation (WPF) 是微软提供的一种用于构建 Windows 应用程序的开发框架。它以其强大的数据绑定、资源管理和可视化效果处理能力而闻名。在WPF中&#xff0c;自定义控件的实现是一个非常重要的方面&#xff0c;几乎所有的应用程序都会或多或少地需要自定…

哪款宠物空气净化器性价比高?希喂、米家和范罗士哪款更好?

这次我真的不是很想抱怨&#xff0c;是我男朋友真的很过分&#xff01;真的很过分&#xff0c;差点让我们两个分道扬镳。先听我说&#xff0c;这不是我和他都嫌家里太安静了吗&#xff0c;每天下班后两个人吃完饭就各玩各的手机&#xff0c;生活太无趣了&#xff0c;加上这几年…

【云从】五、负载均衡CLB

文章目录 1、负载均衡2、云负载均衡CLB3、CLB的组成4、CLB的应用场景 1、负载均衡 互联网发展早期&#xff0c;应用服务单机部署就足以负载所有用户的访问需求 如此&#xff0c;部署和运维都简单&#xff0c;但随着用户和访问量的提高&#xff0c;单台服务器的硬件性能是有上限…

【GESP】C++一级练习BCQM3044,字符形状输出

回到一级知识点&#xff0c;用给定字符按指定形状输出。 题目题解详见&#xff1a;https://www.coderli.com/gesp-1-bcqm3044/ 【GESP】C一级练习BCQM3044&#xff0c;字符形状输出 | OneCoder回到一级知识点&#xff0c;用给定字符按指定形状输出。https://www.coderli.com/…

鸿蒙开发 四十五 鸿蒙状态管理(嵌套对象界面更新)

当运行时的状态变量变化&#xff0c;UI重新渲染&#xff0c;在ArkUI中称为状态管理机制&#xff0c;前提是变量必须被装饰器修饰。不是状态变量的所有更改都会引起刷新&#xff0c;只有可以被框架观测到的更改才会引起UI刷新。其中boolen、string、number类型&#xff0c;可观察…

【项目安全设计】软件系统安全设计规范和标准(doc原件)

1.1安全建设原则 1.2 安全管理体系 1.3 安全管理规范 1.4 数据安全保障措施 1.4.1 数据库安全保障 1.4.2 操作系统安全保障 1.4.3 病毒防治 1.5安全保障措施 1.5.1实名认证保障 1.5.2 接口安全保障 1.5.3 加密传输保障 1.5.4终端安全保障 资料获取&#xff1a;私信或者进主页。…

如何从模块内部运行 Pytest

在 Python 中&#xff0c;pytest 是一个强大的测试框架&#xff0c;用于编写和运行测试用例。通常我们会在命令行中运行 pytest&#xff0c;但是有时你可能希望从模块或脚本的内部运行 pytest&#xff0c;比如为了自动化测试或集成到某个工作流程中。 1、问题背景 当你从模块…

Luatools太难了?保姆级教程来啦!

作为由合宙所提供的调试工具&#xff0c;Luatools支持最新固件获取、固件打包、trace打印、单机烧录等功能 此工具适用于合宙所有 4G 模组和 4G GNSS 模组。 一、下载并安装 &#xff08;一&#xff09;运行环境要求 此工具运行于win7及以上系统;不支持 Mac和 Linux。 &…

三亚旅游微信小程序的设计与实现

详细视频演示 请联系我获取更详细的演示视频 项目运行截图 技术框架 后端采用SpringBoot框架 Spring Boot 是一个用于快速开发基于 Spring 框架的应用程序的开源框架。它采用约定大于配置的理念&#xff0c;提供了一套默认的配置&#xff0c;让开发者可以更专注于业务逻辑而不…

vulnhub(15):lemonsqueezy(hydra爆破、计划任务提权)

端口 nmap -Pn -p- 192.168.72.173 ​ PORT STATE SERVICE 80/tcp open http MAC Address: 00:0C:29:B8:2D:FC (VMware) 打点 80端口 主页面是apache2的默认页面&#xff0c;没有robots.txt&#xff0c;我们直接扫描目录 gobuster dir -u http://192.168.72.173/ -w /usr/…

SHELL脚本之输出语句的使用

shell脚本能够给用户显示一些信息&#xff0c;就需要输出语句的使用。 1.echo语句 如上图所示&#xff0c;中英文都可以&#xff0c; 如上图所示&#xff0c;在shell脚本中对于转义符的使用应该加上-e的选项&#xff0c;\n表示换行&#xff0c;\t表示电脑键盘上使用tab键隔开的…

24/10/12 算法笔记 AlexNet

AlexNet采用深度网络结构&#xff0c;由8层组成&#xff0c;包括5个卷积和3个全连接层&#xff0c;这种深度结构使得网络能够学习到更复杂的特征表示 1.ReLU激活函数&#xff1a; 首次成功的在较深的网络中使用ReLU激活函数&#xff0c;解决了梯度消失问题&#xff0c;加快了…