前言
谈到大模型在各垂直领域中的应用,一定离不开RAG,本系列开始分享一些RAG相关使用经验,可以帮助大家在效果不理想的时候找到方向排查或者优化。
本系列以医疗领域为例,用面试题的形式讲解RAG相关知识,开始RAG系列的分享~
本篇主要是理论知识与经验;后续会结合最新的优化方法给出详细的优化代码,和实践中衍生的思考。
下面是本篇的快捷目录。
1. RAG思路
2. RAG中的prompt模板
3. 检索架构设计
一、RAG思路
这里有一张经典的图:
具体步骤是:
-
加载文件
-
读取文本
-
文本分割
-
文本向量化
-
问句向量化
-
在文本向量中匹配出与问句向量最相似的top k个
-
匹配出的文本作为上下文和问题一起添加到 prompt 中
-
提交给 LLM 生成回答
二、RAG中的prompt模板
已知信息:{context}
根据上述已知信息,简洁和专业的来回答用户的问题。如果无法从中得到答案,请说 “根据已知信息无法回答该问题” 或 “没有提供足够的相关信息”,不允许在答案中添加编造成分,答案请使用中文。
问题是:{question}
其中 {context} 就是检索出来的文档。
三、检索架构设计
基于LLM的文档对话架构分为两部分,先检索,后推理。重心在检索(推荐系统),推理一般结合langchain交给LLM即可。
因此接下来主要是检索架构设计内容。
1. 检索要求
-
提高召回率
-
能减少无关信息
-
速度快
2. 检索逻辑
拿到需要建立检索库的文本,将其组织成二级索引,第一级索引是 [关键信息],第二级是 [原始文本],二者一一映射。 [关键信息]用于加快检索, [原始文本]用于返回给prompt得到结果。
向量检索基于关键信息embeddig,参与相似度计算,检索完成后基于关键信息与原始文本的映射,将原始文本内容作为 {context} 返回。
主要架构图如下:
3. 切分与关键信息抽取
关键信息抽取前需要先对拿到的文档进行切分。
其实文档切分粒度比较难把控,粒度过小的话跨段落语义信息可能丢失,粒度过大噪声又太多。因此在切分时主要是按语义切分。
因此拿到文档先切分再抽取关键信息,可根据实际情况考虑是否进行文章、段落、句子更细致粒度的关键信息抽取。
下面具体来讲讲方法和经验:
1)切分
- 基于NLP篇章分析(discourse parsing)工具
提取出段落之间的主要关系,把所有包含主从关系的段落合并成一段。这样对文章切分完之后保证每一段在说同一件事情。
- 基于BERT中NSP(next sentence prediction)的训练任务
基于NSP(next sentence prediction)任务。设置相似度阈值t,从前往后依次判断相邻两个段落的相似度分数是否大于t,如果大于则合并,否则断开。
2)关键信息抽取
-
直接存储以标点切分的句子:只适用于向量库足够小(检索效率高)且query也比较类似的情况。
-
传统NLP工具:成分句法分析(constituency parsing)可以提取核心部分(名词短语、动词短语……);命名实体识别(NER)可以提取重要实体(货币名、人名、企业名……)。
-
生成关键词模型:类似于ChatLaw中的keyLLM,,即:训练一个生成关键词的模型。在医疗领域中,这个方法是目前比较靠谱且能通用的方法。
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】