关于如何入门LLM,大多数回答都提到了调用API、训练微调和应用。但是大模型更新迭代太快,这个月发布的大模型打榜成功,仅仅过了一个月就被其他模型超越。训练微调也已经不是难事,有大量开源的微调框架(llamafactory、firefly等),你只要懂部署,配置几个参数就能启动训练。甚至现在有大量云上项目,你根本不需要部署,直接上传数据,就能启动。
这我让想起来之前的算法工程师都被调侃成调参师,新出一个大模型,下载下来跑一遍,运行一遍AutoTokenizer.from_pretrained(model_path)
,对于自己理解和入门大模型没有任何意义。
对于初学者如何入门,我的建议是从一个开源大模型入手,全面了解它的运行原理以及如何应用。 可以将大模型比作一辆车,我开车无需理解车是如何做的,但是车出问题了,了解原理能够帮我们快速找到其中的问题。
大模型会成为AI时代的一项基础设施。作为像水、电一样的基础设施,预训练大模型这样的艰巨任务,只会有少数技术实力强、财力雄厚的公司去做。绝大多数人,是水、电的应用者。对这部分人来说,掌握如何用好大模型的技术,更加重要。
用好大模型的第一个层次, 是掌握提示词工程(Prompt Engineering)
用好大模型的第二个层次,是大模型的微调(Fine Tuning),这也是今天这篇文章的主题。
为什么要对大模型进行微调
通常,要对大模型进行微调,有以下一些原因:
第一个原因是, 因为大模型的参数量非常大,训练成本非常高,每家公司都去从头训练一个自己的大模型,这个事情的性价比非常低;
第二个原因是, Prompt Engineering的方式是一种相对来说容易上手的使用大模型的方式,但是它的缺点也非常明显。因为通常大模型的实现原理,都会对输入序列的长度有限制,Prompt Engineering 的方式会把Prompt搞得很长。
越长的Prompt,大模型的推理成本越高,因为推理成本是跟Prompt长度的平方正向相关的。
另外,Prompt太长会因超过限制而被截断,进而导致大模型的输出质量打折口,这也是一个非常严重的问题。
对于个人使用者而言,如果是解决自己日常生活、工作中的一些问题,直接用Prompt Engineering的方式,通常问题不大。
但对于对外提供服务的企业来说,要想在自己的服务中接入大模型的能力,推理成本是不得不要考虑的一个因素,微调相对来说就是一个更优的方案。
第三个原因是, Prompt Engineering的效果达不到要求,企业又有比较好的自有数据,能够通过自有数据,更好的提升大模型在特定领域的能力。这时候微调就非常适用。
第四个原因是,要在个性化的服务中使用大模型的能力,这时候针对每个用户的数据,训练一个轻量级的微调模型,就是一个不错的方案。
第五个原因是,数据安全的问题。如果数据是不能传递给第三方大模型服务的,那么搭建自己的大模型就非常必要。通常这些开源的大模型都是需要用自有数据进行微调,才能够满足业务的需求,这时候也需要对大模型进行微调。
什么时候需要LLM微调
说起LLM,总会涉及到上下文学习、零样本、单样本和少样本推理等话题。我们先快速了解一下它们主要的功能。
上下文学习(In-context learning) 是一种通过在提示中加入特定任务示例来改进提示的方法,为LLM提供了完成任务的蓝图。
零样本(Zero-shot)、单样本(One-shot)和少样本(Few-shot)推理 零样本推理是在提示中直接使用输入数据,不添加额外示例。如果零样本推理未能达到预期结果,可以使用单样本或少样本推理。这些策略涉及在提示中添加一个或多个已完成的示例,帮助较小的LLM表现得更好。
上下文学习的问题 将以上这些技术直接应用于用户提示,旨在优化模型输出,使其更符合用户偏好。问题是它们并不总是有效,尤其是对于较小的LLM。除此之外,在提示中包含的任何示例都会占用宝贵的上下文窗口空间,减少了包含其他有用信息的空间。
当以上方式无法解决相关问题时,这就需要LLM微调。但它与预训练阶段使用大量非结构化文本数据不同,微调是一个监督学习过程。这意味着你使用标记好的示例数据集来更新LLM的权重。这些标记好的示例通常是prompt-response,使得模型能更好地完成特定任务。
如何对大模型进行微调
从参数规模的角度,大模型的微调分成两条技术路线:
一条是对全量的参数,进行全量的训练,这条路径叫全量微调FFT(Full Fine Tuning)。
一条是只对部分的参数进行训练,这条路径叫PEFT(Parameter-Efficient Fine Tuning)****。
FFT的原理,就是用特定的数据,对大模型进行训练,将W变成W,W
相比W ,最大的优点就是上述特定数据领域的表现会好很多。
但FFT也会带来一些问题,影响比较大的问题,主要有以下两个:
一个是训练的成本会比较高,因为微调的参数量跟预训练的是一样的多的;
一个是叫灾难性遗忘(Catastrophic Forgetting),用特定训练数据去微调可能会把这个领域的表现变好,但也可能会把原来表现好的别的领域的能力变差。
PEFT主要想解决的问题,就是FFT存在的上述两个问题,PEFT也是目前比较主流的微调方案。
从训练数据的来源、以及训练的方法的角度,大模型的微调有以下几条技术路线:
一个是监督式微调SFT****(Supervised Fine Tuning),这个方案主要是用人工标注的数据,用传统机器学习中监督学习的方法,对大模型进行微调;
一个是基于人类反馈的强化学习微调RLHF****(Reinforcement Learning with Human Feedback),这个方案的主要特点是把人类的反馈,通过强化学习的方式,引入到对大模型的微调中去,让大模型生成的结果,更加符合人类的一些期望;
还有一个是基于AI反馈的强化学习微调RLAIF****(Reinforcement Learning with AI Feedback),这个原理大致跟RLHF类似,但是反馈的来源是AI。这里是想解决反馈系统的效率问题,因为收集人类反馈,相对来说成本会比较高、效率比较低。
不同的分类角度,只是侧重点不一样,对同一个大模型的微调,也不局限于某一个方案,可以多个方案一起。
微调的最终目的,是能够在可控成本的前提下,尽可能地提升大模型在特定领域的能力。
如何掌握AI大模型开发技能?
第一步:掌握开发AGI时代新应用程序的技能;
比如:大模型应用内核、LangChain开发框架、向量数据库等;
第二步:搞定开发企业级AI Agent的应用技能;
比如:AI Agent、大模型缓存、算力等;
第三步:驾驭开发企业级专有大模型的技能;
比如:RAG、微调等;
第四步:深入应用大模型技术成为开发大师;
比如:大模型预训练、LLMOps等;
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓