使用3080ti运行blip2的案例
- 本机环境(==大家主要看GPU,ubuntu版本和cuda版本即可==):
- 安装流程
- 我最后安装的所有包的信息(python 3.9 )以供参考(environment.yml):
本机环境(大家主要看GPU,ubuntu版本和cuda版本即可):
(注意!我在运行blip2
的demo
的时候显存用了80G
以上,所以虽然这张卡能配好,但为了显存需要多卡运行!)
配置参考blip2的官方github网址。
PyTorch : 2.1.0
ubuntu : 22.04
Python : 3.10
Cuda : 12.1
RTX : 3080 Ti(12GB)
CPU : 12 vCPU Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz
内存 : 90GB
安装流程
在该环境中运行如下代码开始安装:
我发现当我使用python3.8(cuda11.3,cuda11.1)
的时候运行不起来,所以这里换成了cuda12.1
和python3.9
。
conda create -n blip2 python=3.9
conda init bash && source /root/.bashrc
conda activate blip2
之后开始安装lavis
:
pip install salesforce-lavis
之后我发现,环境还缺少了相关的opencv-python
包,所以又运行:
pip install opencv-python
好像网上也有帖子说要本地安装salesforce-lavis,但是我不用本地安装就能运行了,大家也可以参考一下他们的安装方法。
接下来就可以运行如下的代码进行测试实验了
import torch
from PIL import Image
import requests
from lavis.models import load_model_and_preprocess
# setup device to use
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# load sample image
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
raw_image.show() #使用PIL来展示图片,原来的display函数应该是colab里的
#display(raw_image.resize((596, 437)))
model, vis_processors, _ = load_model_and_preprocess(
name="blip2_t5", model_type="pretrain_flant5xxl", is_eval=True, device=device
)
#也可以用其他的模型
# Other available models:
#
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_opt", model_type="pretrain_opt2.7b", is_eval=True, device=device
# )
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_opt", model_type="pretrain_opt6.7b", is_eval=True, device=device
# )
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_opt", model_type="caption_coco_opt2.7b", is_eval=True, device=device
# )
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_opt", model_type="caption_coco_opt6.7b", is_eval=True, device=device
# )
#
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_t5", model_type="pretrain_flant5xl", is_eval=True, device=device
# )
#
# model, vis_processors, _ = load_model_and_preprocess(
# name="blip2_t5", model_type="caption_coco_flant5xl", is_eval=True, device=device
# )
vis_processors.keys()
但是运行这个代码,会自动下载blip2t5
文件,然后我们直接连接huggingface
网站又有一些问题,下载速度非常慢,下载不下来。
因为下载太慢了,我们可以在Salesforce/blip2-flan-t5-xxl · Hugging Face Hugging Face上找到相关的文件并下载。
下载方法:本地下载huggingface模型并在服务器上使用流程
如果不做任何改动,本来默认的下载位置如下(可以从huggingface上手动下载我们需要的模型,之后上传到这个地址下):
但是有时候这个默认路径是在系统盘里,上传到这个系统盘里,系统盘内存容量会不够。所以我们继续探索,找一下如何放到别的盘里。
Huggingface 默认下载位置更改
添加一句export HF_HOME="/root/autodl-tmp/huggingface"
再 source ~/.bashrc
使配置生效。
(因为觉得有点麻烦,我直接把环境变量在下面的代码里改了)
我在目录autodl-tmp
下创建两个目录:
/huggingface
文件夹
/torch-model
文件夹
import torch
from PIL import Image
import requests
from lavis.models import load_model_and_preprocess
# setup device to use
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# load sample image
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png'
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')
raw_image.show() #使用PIL来展示图片,原来的display函数应该是colab里的
#display(raw_image.resize((596, 437)))
import os
os.environ['TORCH_HOME']=r"/root/autodl-tmp/torch-model" #更改pytorch断点的默认保存目录
os.environ['TRANSFORMERS_CACHE'] = r'/root/autodl-tmp/huggingface' #更改huggingface 的默认保存目录
model, vis_processors, _ = load_model_and_preprocess(
name="blip2_t5", model_type="pretrain_flant5xxl", is_eval=True, device=device
)
vis_processors.keys()
# 引入环境变量之后,成功解决这个问题。
我最后安装的所有包的信息(python 3.9 )以供参考(environment.yml):
我的environment.yml文件内容:
# This file may be used to create an environment using:
# $ conda create --name <env> --file <this file>
# platform: linux-64
_libgcc_mutex=0.1=main
_openmp_mutex=5.1=1_gnu
altair=5.4.1=pypi_0
annotated-types=0.7.0=pypi_0
antlr4-python3-runtime=4.9.3=pypi_0
asttokens=2.4.1=pypi_0
attrs=24.2.0=pypi_0
bleach=6.1.0=pypi_0
blinker=1.8.2=pypi_0
blis=1.0.1=pypi_0
braceexpand=0.1.7=pypi_0
ca-certificates=2024.9.24=h06a4308_0
cachetools=5.5.0=pypi_0
catalogue=2.0.10=pypi_0
certifi=2024.8.30=pypi_0
cfgv=3.4.0=pypi_0
charset-normalizer=3.4.0=pypi_0
click=8.1.7=pypi_0
cloudpathlib=0.19.0=pypi_0
confection=0.1.5=pypi_0
contexttimer=0.3.3=pypi_0
contourpy=1.3.0=pypi_0
cycler=0.12.1=pypi_0
cymem=2.0.8=pypi_0
decorator=5.1.1=pypi_0
decord=0.6.0=pypi_0
distlib=0.3.9=pypi_0
einops=0.8.0=pypi_0
exceptiongroup=1.2.2=pypi_0
executing=2.1.0=pypi_0
fairscale=0.4.4=pypi_0
filelock=3.16.1=pypi_0
fonttools=4.54.1=pypi_0
fsspec=2024.9.0=pypi_0
ftfy=6.3.0=pypi_0
gitdb=4.0.11=pypi_0
gitpython=3.1.43=pypi_0
huggingface-hub=0.25.2=pypi_0
identify=2.6.1=pypi_0
idna=3.10=pypi_0
imageio=2.35.1=pypi_0
importlib-resources=6.4.5=pypi_0
iopath=0.1.10=pypi_0
ipython=8.18.1=pypi_0
jedi=0.19.1=pypi_0
jinja2=3.1.4=pypi_0
jsonschema=4.23.0=pypi_0
jsonschema-specifications=2024.10.1=pypi_0
kaggle=1.6.17=pypi_0
kiwisolver=1.4.7=pypi_0
langcodes=3.4.1=pypi_0
language-data=1.2.0=pypi_0
lazy-loader=0.4=pypi_0
ld_impl_linux-64=2.40=h12ee557_0
libffi=3.4.4=h6a678d5_1
libgcc-ng=11.2.0=h1234567_1
libgomp=11.2.0=h1234567_1
libstdcxx-ng=11.2.0=h1234567_1
marisa-trie=1.2.0=pypi_0
markdown-it-py=3.0.0=pypi_0
markupsafe=3.0.1=pypi_0
matplotlib=3.9.2=pypi_0
matplotlib-inline=0.1.7=pypi_0
mdurl=0.1.2=pypi_0
mpmath=1.3.0=pypi_0
murmurhash=1.0.10=pypi_0
narwhals=1.9.2=pypi_0
ncurses=6.4=h6a678d5_0
networkx=3.2.1=pypi_0
nodeenv=1.9.1=pypi_0
numpy=2.0.2=pypi_0
nvidia-cublas-cu12=12.1.3.1=pypi_0
nvidia-cuda-cupti-cu12=12.1.105=pypi_0
nvidia-cuda-nvrtc-cu12=12.1.105=pypi_0
nvidia-cuda-runtime-cu12=12.1.105=pypi_0
nvidia-cudnn-cu12=9.1.0.70=pypi_0
nvidia-cufft-cu12=11.0.2.54=pypi_0
nvidia-curand-cu12=10.3.2.106=pypi_0
nvidia-cusolver-cu12=11.4.5.107=pypi_0
nvidia-cusparse-cu12=12.1.0.106=pypi_0
nvidia-nccl-cu12=2.20.5=pypi_0
nvidia-nvjitlink-cu12=12.6.77=pypi_0
nvidia-nvtx-cu12=12.1.105=pypi_0
omegaconf=2.3.0=pypi_0
opencv-python=4.10.0.84=pypi_0
opencv-python-headless=4.5.5.64=pypi_0
opendatasets=0.1.22=pypi_0
openssl=3.0.15=h5eee18b_0
packaging=24.1=pypi_0
pandas=2.2.3=pypi_0
parso=0.8.4=pypi_0
pexpect=4.9.0=pypi_0
pillow=10.4.0=pypi_0
pip=24.2=py39h06a4308_0
platformdirs=4.3.6=pypi_0
plotly=5.24.1=pypi_0
portalocker=2.10.1=pypi_0
pre-commit=4.0.1=pypi_0
preshed=3.0.9=pypi_0
prompt-toolkit=3.0.48=pypi_0
protobuf=5.28.2=pypi_0
ptyprocess=0.7.0=pypi_0
pure-eval=0.2.3=pypi_0
pyarrow=17.0.0=pypi_0
pycocoevalcap=1.2=pypi_0
pycocotools=2.0.8=pypi_0
pydantic=2.9.2=pypi_0
pydantic-core=2.23.4=pypi_0
pydeck=0.9.1=pypi_0
pygments=2.18.0=pypi_0
pyparsing=3.1.4=pypi_0
python=3.9.20=he870216_1
python-dateutil=2.9.0.post0=pypi_0
python-magic=0.4.27=pypi_0
python-slugify=8.0.4=pypi_0
pytz=2024.2=pypi_0
pyyaml=6.0.2=pypi_0
readline=8.2=h5eee18b_0
referencing=0.35.1=pypi_0
regex=2024.9.11=pypi_0
requests=2.32.3=pypi_0
rich=13.9.2=pypi_0
rpds-py=0.20.0=pypi_0
salesforce-lavis=1.0.2=pypi_0
scikit-image=0.24.0=pypi_0
scipy=1.13.1=pypi_0
sentencepiece=0.2.0=pypi_0
setuptools=75.1.0=py39h06a4308_0
shellingham=1.5.4=pypi_0
six=1.16.0=pypi_0
smart-open=7.0.5=pypi_0
smmap=5.0.1=pypi_0
spacy=3.8.2=pypi_0
spacy-legacy=3.0.12=pypi_0
spacy-loggers=1.0.5=pypi_0
sqlite=3.45.3=h5eee18b_0
srsly=2.4.8=pypi_0
stack-data=0.6.3=pypi_0
streamlit=1.39.0=pypi_0
sympy=1.13.3=pypi_0
tenacity=9.0.0=pypi_0
text-unidecode=1.3=pypi_0
thinc=8.3.2=pypi_0
tifffile=2024.8.30=pypi_0
timm=0.4.12=pypi_0
tk=8.6.14=h39e8969_0
tokenizers=0.13.3=pypi_0
toml=0.10.2=pypi_0
torch=2.4.1=pypi_0
torchvision=0.19.1=pypi_0
tornado=6.4.1=pypi_0
tqdm=4.66.5=pypi_0
traitlets=5.14.3=pypi_0
transformers=4.26.1=pypi_0
triton=3.0.0=pypi_0
typer=0.12.5=pypi_0
typing-extensions=4.12.2=pypi_0
tzdata=2024.2=pypi_0
urllib3=2.2.3=pypi_0
virtualenv=20.26.6=pypi_0
wasabi=1.1.3=pypi_0
watchdog=5.0.3=pypi_0
wcwidth=0.2.13=pypi_0
weasel=0.4.1=pypi_0
webdataset=0.2.100=pypi_0
webencodings=0.5.1=pypi_0
wheel=0.44.0=py39h06a4308_0
wrapt=1.16.0=pypi_0
xz=5.4.6=h5eee18b_1
zipp=3.20.2=pypi_0
zlib=1.2.13=h5eee18b_1