《从零开始大模型开发与微调》真的把大模型说透了!零基础入门一定要看!

2022年底,ChatGPT震撼上线,大语言模型技术迅速“席卷”了整个社会,人工智能技术因此迎来了一次重要进展。与大语言模型相关的研发岗薪资更是水涨船高,基本都是5w月薪起。很多程序员也想跟上ChatGPT脚步,今天给大家带来这本《从零开始大模型开发与微调》是很好入门书!
在这里插入图片描述

内容简介

大模型是深度学习自然语言处理皇冠上的一颗明珠,也是当前AI和NLP研究与产业中最重要的方向之一。本书使用PyTorch 2.0作为学习大模型的基本框架,以ChatGLM为例详细讲解大模型的基本理论、算法、程序实现、应用实战以及微调技术,为读者揭示大模型开发技术。本书配套示例源代码、PPT课件。

《从零开始大模型开发与微调:基于PyTorch与ChatGLM》共18章,内容包括人工智能与大模型、PyTorch 2.0深度学习环境搭建、从零开始学习PyTorch 2.0、深度学习基础算法详解、基于PyTorch卷积层的MNIST分类实战、PyTorch数据处理与模型展示、ResNet实战、有趣的词嵌入、基于PyTorch循环神经网络的中文情感分类实战、自然语言处理的编码器、预训练模型BERT、自然语言处理的解码器、强化学习实战、只具有解码器的GPT-2模型、实战训练自己的ChatGPT、开源大模型ChatGLM使用详解、ChatGLM高级定制化应用实战、对ChatGLM进行高级微调。

在这里插入图片描述

适读人群:

《从零开始大模型开发与微调:基于PyTorch与ChatGLM》适合PyTorch深度学习初学者、大模型开发初学者、大模型开发人员学习,也适合高等院校人工智能、智能科学与技术、数据科学与大数据技术、计算机科学与技术等专业的师生作为教学参考书。

这本《从零开始大模型开发与微调》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《从零开始大模型开发与微调》免费分享(安全链接,放心点击)]👈

目录

第1章 新时代的曙光—人工智能与大模型 1 [4]
1.1 人工智能:思维与实践的融合 1
1.1.1 人工智能的历史与未来 2
1.1.2 深度学习与人工智能 2
1.1.3 选择PyTorch 2.0实战框架 3
1.2 大模型开启人工智能的新时代 4
1.2.1 大模型带来的变革 4
1.2.2 最强的中文大模型—清华大学ChatGLM介绍 5
1.2.3 近在咫尺的未来—大模型的应用前景 6
1.3 本章小结 7
第2章 PyTorch 2.0深度学习环境搭建 8
2.1 环境搭建1:安装Python 8
2.1.1 Miniconda的下载与安装 8
2.1.2 PyCharm的下载与安装 11
2.1.3 Python代码小练习:计算Softmax函数 14
2.2 环境搭建2:安装PyTorch 2.0 15
2.2.1 Nvidia 10/20/30/40系列显卡选择的GPU版本 15
2.2.2 PyTorch 2.0 GPU Nvidia运行库的安装 15
2.2.3 PyTorch 2.0小练习:Hello PyTorch 18
2.3 生成式模型实战:古诗词的生成 18
2.4 图像降噪:手把手实战第一个深度学习模型 19
2.4.1 MNIST数据集的准备 19
2.4.2 MNIST数据集的特征和标签介绍 21
2.4.3 模型的准备和介绍 22
2.4.4 对目标的逼近—模型的损失函数与优化函数 24
2.4.5 基于深度学习的模型训练 24
2.5 本章小结 26
第3章 从零开始学习PyTorch 2.0 27
3.1 实战MNIST手写体识别 27
3.1.1 数据图像的获取与标签的说明 27
3.1.2 实战基于PyTorch 2.0的手写体识别模型 29
3.1.3 基于Netron库的PyTorch 2.0模型可视化 32
3.2 自定义神经网络框架的基本设计 34
3.2.1 神经网络框架的抽象实现 34
3.2.2 自定义神经网络框架的具体实现 35
3.3 本章小结 43
第4章 一学就会的深度学习基础算法详解 44
4.1 反向传播神经网络的前身历史 44
4.2 反向传播神经网络两个基础算法详解 47
4.2.1 最小二乘法详解 48
4.2.2 梯度下降算法 50
4.2.3 最小二乘法的梯度下降算法及其Python实现 52
4.3 反馈神经网络反向传播算法介绍 58
4.3.1 深度学习基础 58
4.3.2 链式求导法则 59
4.3.3 反馈神经网络的原理与公式推导 60
4.3.4 反馈神经网络原理的激活函数 64
4.3.5 反馈神经网络原理的Python实现 66
4.4 本章小结 70
第5章 基于PyTorch卷积层的MNIST分类实战 71
5.1 卷积运算的基本概念 71
5.1.1 基本卷积运算示例 72
5.1.2 PyTorch中的卷积函数实现详解 73
5.1.3 池化运算 75
5.1.4 Softmax激活函数 77
5.1.5 卷积神经网络的原理 78
5.2 实战:基于卷积的MNIST手写体分类 80
5.2.1 数据的准备 80
5.2.2 模型的设计 81
5.2.3 基于卷积的MNIST分类模型 82
5.3 PyTorch的深度可分离膨胀卷积详解 84
5.3.1 深度可分离卷积的定义 84
5.3.2 深度的定义以及不同计算层待训练参数的比较 86
5.3.3 膨胀卷积详解 87
5.3.4 实战:基于深度可分离膨胀卷积的MNIST手写体识别 87
5.4 本章小结 90
第6章 可视化的PyTorch数据处理与模型展示 91
6.1 用于自定义数据集的torch.utils.data工具箱使用详解 92
6.1.1 使用torch.utils.data. Dataset封装自定义数据集 92
6.1.2 改变数据类型的Dataset类中的transform的使用 93
6.1.3 批量输出数据的DataLoader类详解 98
6.2 实战:基于tensorboardX的训练可视化展示 100
6.2.1 可视化组件tensorboardX的简介与安装 100
6.2.2 tensorboardX可视化组件的使用 100
6.2.3 tensorboardX对模型训练过程的展示 103
6.3 本章小结 105
第7章 ResNet实战 106
7.1 ResNet基础原理与程序设计基础 106
7.1.1 ResNet诞生的背景 107
7.1.2 PyTorch 2.0中的模块工具 109
7.1.3 ResNet残差模块的实现 110
7.1.4 ResNet网络的实现 112
7.2 ResNet实战:CIFAR-10数据集分类 114
7.2.1 CIFAR-10数据集简介 114
7.2.2 基于ResNet的CIFAR-10数据集分类 117
7.3 本章小结 118
第8章 有趣的词嵌入 120
8.1 文本数据处理 120
8.1.1 Ag_news数据集介绍和数据清洗 120
8.1.2 停用词的使用 123
8.1.3 词向量训练模型Word2Vec使用介绍 125
8.1.4 文本主题的提取:基于TF-IDF 128
8.1.5 文本主题的提取:基于TextRank 132
8.2 更多的词嵌入方法—FastText和预训练词向量 134
8.2.1 FastText的原理与基础算法 135
8.2.2 FastText训练及其与PyTorch 2.0的协同使用 136
8.2.3 使用其他预训练参数来生成PyTorch 2.0词嵌入矩阵(中文) 140
8.3 针对文本的卷积神经网络模型简介—字符卷积 141
8.3.1 字符(非单词)文本的处理 141
8.3.2 卷积神经网络文本分类模型的实现—Conv1d(一维卷积) 148
8.4 针对文本的卷积神经网络模型简介—词卷积 151
8.4.1 单词的文本处理 151
8.4.2 卷积神经网络文本分类模型的实现—Conv2d(二维卷积) 153
8.5 使用卷积对文本分类的补充内容 155
8.5.1 汉字的文本处理 155
8.5.2 其他细节 157
8.6 本章小结 158
第9章 基于循环神经网络的中文情感分类实战 160
9.1 实战:循环神经网络与情感分类 160
9.2 循环神经网络理论讲解 165
9.2.1 什么是GRU 165
9.2.2 单向不行,那就双向 167
9.3 本章小结 168
第10章 从零开始学习自然语言处理的编码器 169
10.1 编码器的核心—注意力模型 170
10.1.1 输入层—初始词向量层和位置编码器层 170
10.1.2 自注意力层 172
10.1.3 ticks和Layer Normalization 177
10.1.4 多头注意力 178
10.2 编码器的实现 180
10.2.1 前馈层的实现 181
10.2.2 编码器的实现 182
10.3 实战编码器:拼音汉字转化模型 184
10.3.1 汉字拼音数据集处理 185
10.3.2 汉字拼音转化模型的确定 187
10.3.3 模型训练部分的编写 190
10.4 本章小结 191
第11章 站在巨人肩膀上的预训练模型BERT 193
11.1 预训练模型BERT 193
11.1.1 BERT的基本架构与应用 194
11.1.2 BERT预训练任务与微调 195
11.2 实战BERT:中文文本分类 198
11.2.1 使用Hugging Face获取BERT预训练模型 198
11.2.2 BERT实战文本分类 200
11.3 更多的预训练模型 203
11.4 本章小结 205
第12章 从1开始自然语言处理的解码器 206
12.1 解码器的核心—注意力模型 206
12.1.1 解码器的输入和交互注意力层的掩码 207
12.1.2 为什么通过掩码操作能够减少干扰 212
12.1.3 解码器的输出(移位训练方法) 213
12.1.4 解码器的实现 214
12.2 解码器实战—拼音汉字翻译模型 215
12.2.1 数据集的获取与处理 216
12.2.2 翻译模型 218
12.2.3 拼音汉字模型的训练 229
12.2.4 拼音汉字模型的使用 230
12.3 本章小结 231
第13章 基于PyTorch 2.0的强化学习实战 232
13.1 基于强化学习的火箭回收实战 232
13.1.1 火箭回收基本运行环境介绍 233
13.1.2 火箭回收参数介绍 234
13.1.3 基于强化学习的火箭回收实战 234
13.1.4 强化学习的基本内容 239
13.2 强化学习的基本算法—PPO算法 243
13.2.1 PPO算法简介 243
13.2.2 函数使用说明 244
13.2.3 一学就会的TD-error理论介绍 245
13.2.4 基于TD-error的结果修正 247
13.2.5 对于奖励的倒序构成的说明 248
13.3 本章小结 249
第14章 ChatGPT前身—只具有解码器的GPT-2模型 250
14.1 GPT-2模型简介 250
14.1.1 GPT-2模型的输入和输出结构—自回归性 251
14.1.2 GPT-2模型的PyTorch实现 252
14.1.3 GPT-2模型输入输出格式的实现 257
14.2 Hugging Face GPT-2模型源码模型详解 259
14.2.1 GPT2LMHeadModel类和GPT2Model类详解 259
14.2.2 Block类详解 270
14.2.3 Attention类详解 274
14.2.4 MLP类详解 281
14.3 Hugging Face GPT-2模型的使用与自定义微调 282
14.3.1 模型的使用与自定义数据集的微调 282
14.3.2 基于预训练模型的评论描述微调 285
14.4 自定义模型的输出 286
14.4.1 GPT输出的结构 286
14.4.2 创造性参数temperature与采样个数topK 288
14.5 本章小结 290
第15章 实战训练自己的ChatGPT 291
15.1 什么是ChatGPT 291
15.2 RLHF模型简介 293
15.2.1 RLHF技术分解 293
15.2.2 RLHF中的具体实现—PPO算法 296
15.3 基于RLHF实战的ChatGPT正向评论的生成 297
15.3.1 RLHF模型进化的总体讲解 297
15.3.2 ChatGPT评分模块简介 298
15.3.3 带有评分函数的ChatGPT模型的构建 300
15.3.4 RLHF中的PPO算法—KL散度 301
15.3.5 RLHF中的PPO算法—损失函数 303
15.4 本章小结 304
第16章 开源大模型ChatGLM使用详解 305
16.1 为什么要使用大模型 305
16.1.1 大模型与普通模型的区别 306
16.1.2 一个神奇的现象—大模型的涌现能力 307
16.2 ChatGLM使用详解 307
16.2.1 ChatGLM简介及应用前景 308
16.2.2 下载ChatGLM 309
16.2.3 ChatGLM的使用与Prompt介绍 310
16.3 本章小结 311
第17章 开源大模型ChatGLM 高级定制化应用实战 312
17.1 医疗问答GLMQABot搭建实战—基于ChatGLM搭建专业客服问答机器人 312
17.1.1 基于ChatGLM搭建专业领域问答机器人的思路 313
17.1.2 基于真实医疗问答的数据准备 314
17.1.3 文本相关性(相似度)的比较算法 315
17.1.4 提示语句Prompt的构建 316
17.1.5 基于单个文档的GLMQABot的搭建 316
17.2 金融信息抽取实战—基于知识链的ChatGLM本地化知识库检索与智能答案生成 318
17.2.1 基于ChatGLM搭建智能答案生成机器人的思路 319
17.2.2 获取专业(范畴内)文档与编码存储 320
17.2.3 查询文本编码的相关性比较与排序 322
17.2.4 基于知识链的ChatGLM本地化知识库检索与智能答案生成 325
17.3 基于ChatGLM的一些补充内容 327
17.3.1 语言的艺术—Prompt的前世今生 328
17.3.2 清华大学推荐的ChatGLM微调方法 329
17.3.2 一种新的基于ChatGLM的文本检索方案 330
17.4 本章小结 331
第18章 对训练成本上亿美元的ChatGLM进行高级微调 332
18.1 ChatGLM模型的本地化处理 332
18.1.1 下载ChatGLM源码与合并存档 332
18.1.2 修正自定义的本地化模型 335
18.1.3 构建GLM模型的输入输出示例 337
18.2 高级微调方法1—基于加速库Accelerator的全量数据微调 339
18.2.1 数据的准备—将文本内容转化成三元组的知识图谱 339
18.2.2 加速的秘密—Accelerate模型加速工具详解 342
18.2.3 更快的速度—使用INT8(INT4)量化模型加速训练 345
18.3 高级微调方法2—基于LoRA的模型微调 348
18.3.1 对ChatGLM进行微调的方法—LoRA 348
18.3.2 自定义LoRA的使用方法 349
18.3.3 基于自定义LoRA的模型训练 350
18.3.4 基于自定义LoRA的模型推断 352
18.3.5 基于基本原理的LoRA实现 355
18.4 高级微调方法3—基于Huggingface的PEFT模型微调 357
18.4.1 PEFT技术详解 358
18.4.2 PEFT的使用与参数设计 359
18.4.3 Huggingface专用PEFT的使用 360
18.5 本章小结 362
在这里插入图片描述
在这里插入图片描述

这本《从零开始大模型开发与微调》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

PDF书籍: 完整版本链接获取

👉[CSDN大礼包🎁:《从零开始大模型开发与微调》免费分享(安全链接,放心点击)]👈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/887891.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

51单片机系列-串口(UART)通信技术

🌈个人主页: 羽晨同学 💫个人格言:“成为自己未来的主人~” 并行通信和串行通信 并行方式 并行方式:数据的各位用多条数据线同时发送或者同时接收 并行通信特点:传送速度快,但因需要多根传输线&#xf…

免杀对抗—GOC#反VT沙盒资源分离混淆加密

前言 今天的主要内容是反VT沙盒,我们都知道生成的后门会被杀软上穿到沙盒中去运行,去逆向。如此一来我们的后门就很容易被查杀掉,但如果我们对后门进行一些操作,让它在被逆向的时候,反编译出一堆乱码,或者…

【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述

【大语言模型-论文精读】用于医疗领域摘要任务的大型语言模型评估综述 论文信息: 用于医疗领域摘要任务的大型语言模型评估:一篇叙述性综述, 文章是由 Emma Croxford , Yanjun Gao 博士 , Nicholas Pellegrino , Karen K. Wong 等人近期合作…

STM32PWM应用

目录 一、输出比较(OC) 二、PWM: 1、简介 2、基本结构 3、参数计算 三、PWM驱动LED呼吸灯 1、代码 四、PWM驱动Sg90舵机 1、工作原理 2、完整代码 五、PWM驱动直流电机 1、TB6612芯片模块 2、完整代码: 一、输出比较(OC) OC(Outp…

智能医疗:Spring Boot医院管理系统开发

2相关技术 2.1 MYSQL数据库 MySQL是一个真正的多用户、多线程SQL数据库服务器。 是基于SQL的客户/服务器模式的关系数据库管理系统,它的有点有有功能强大、使用简单、管理方便、安全可靠性高、运行速度快、多线程、跨平台性、完全网络化、稳定性等,非常适…

【Python】PDFMiner.six:高效处理PDF文档的Python工具

PDF是一种广泛使用的文件格式,特别适用于呈现固定布局的文档。然而,提取PDF文件中的文本和信息并不总是那么简单。幸好有许多Python库可以帮助我们,其中,PDFMiner.six 是一个功能强大、专门用于PDF文档解析的库。 ⭕️宇宙起点 &a…

cnn突破四(生成卷积核与固定核对比)

cnn突破三中生成四个卷积核,训练6万次,91分,再训练6万次,95分,不是很满意,但又找不到问题点,所以就想了个办法,使用三个固定核,加上三层bpnet神经网络,看看效…

王道-数据结构

1 设数组data[m]作为循环队列的存储空间,front为队头指针,rear为队尾指针,则执行出队操作后其头指针front值为____ 答案:D 解析:队列的头指针指向队首元素的实际位置,因此出队操作后,头指针需向上移动一个元素的位置。循环队列的容量为m,所以头指针front加1以后,需…

【d60】【Java】【力扣】509. 斐波那契数

思路 要做的问题:求F(n), F(n)就等于F(n-1)F(n-2),要把这个F(n-1)F(n-2)当作常量,已经得到的值, 结束条件:如果是第1 第2 个数字的时候,没有n-1和n-2,所以…

闯关训练三:Git 基础知识

任务1: 破冰活动:自我介绍 点击Fork目标项目,创建一个新的Fork 获取仓库链接 在连接好开发机的vscode终端中逐行执行以下代码: git clone https://github.com/KelvinIII/Tutorial.git # 修改为自己frok的仓库 cd Tutorial/ git branch -a g…

4. 将pycharm本地项目同步到(Linux)服务器上——深度学习·科研实践·从0到1

目录 前序工作 1. 服务器项目名和本地一致 2. pycharm连接服务器 3. 本地项目对应到服务器项目 4. 简单测试一下同步效果 同步成功 前序工作 在同步到服务器之前,得确保已经完成以下几个前置步骤: 1. 租一个云服务器,可参考&#xff1a…

18734 拓扑排序

### 思路 1. **建模问题**:将课程和依赖关系建模为有向图,其中课程是节点,依赖关系是有向边。 2. **选择算法**:使用拓扑排序算法来确定课程的学习顺序。由于需要确保输出唯一性,同等条件下编号小的课程排在前面&…

WDG看门狗在stm32中的应用

一,WDG看门狗的介绍 看门狗可以监控程序的运行状态,当程序因为设计漏洞、硬件故障、电磁干扰等原因,出现卡死或跑飞现象时,看门狗能及时复位程序,避免程序陷入长时间的罢工状态,保证系统的可靠性和安全性看…

2-114 基于matlab的CA模型

基于matlab的CA模型,Singer模型对单机动目标进行跟踪算法,具有10页实验文档。采用蒙特卡罗方法对一个二坐标雷达对一平面上运动的目标进行观测,得到跟踪滤波结果。程序已调通,可直接运行。 下载源程序请点链接:2-114 …

libcurl网络协议库使用Demo

目录 1 libcurl简介 2 libcurl编译 3 使用步骤 4 函数说明 4.1 全局初始化函数 curl_global_init 4.2 全局释放函数 curl_global_cleanup 4.3 libcurl库版本 curl_version 4.4 开启会话 curl_easy_init 4.5 结束会话 curl_easy_cleanup 4.6 设置传输选项 curl_easy_se…

Stable Diffusion绘画 | 插件-Deforum:动态视频生成(中篇)

本篇文章重点讲解参数最多的 关键帧 模块。 「动画模式」选择「3D」: 下方「运动」Tab 会有一系列参数: 以下4个参数,只有「动画模式」选择「2D」才会生效,可忽略: 运动 平移 X 让镜头左右移动: 大于0&a…

Seata学习

系列文章目录 JavaSE基础知识、数据类型学习万年历项目代码逻辑训练习题代码逻辑训练习题方法、数组学习图书管理系统项目面向对象编程:封装、继承、多态学习封装继承多态习题常用类、包装类、异常处理机制学习集合学习IO流、多线程学习仓库管理系统JavaSE项目员工…

华为eNSP:端口隔离

一,什么是端口隔离 端口隔离是一种网络配置技术,用于将不同的网络设备或用户隔离在不同的虚拟局域网(VLAN)中,以实现网络流量的隔离和安全性提升。通过在交换机或路由器上配置端口隔离,可以将连接到同一设…

【机器学习-无监督学习】概率图模型

【作者主页】Francek Chen 【专栏介绍】 ⌈ ⌈ ⌈Python机器学习 ⌋ ⌋ ⌋ 机器学习是一门人工智能的分支学科,通过算法和模型让计算机从数据中学习,进行模型训练和优化,做出预测、分类和决策支持。Python成为机器学习的首选语言,…

在VS code 中部署C#和avalonia开发环境

要在 Mac 的 VS Code 中配置 C# 和 Avalonia 的开发环境,您可以按照以下步骤进行: 1. 安装 .NET SDK 下载 .NET SDK: 访问 .NET 下载页面。选择适用于 macOS 的最新稳定版本的 .NET SDK,并下载安装程序。安装 .NET SDK&#xff1…