Geogebra中级篇003—几何对象之点与向量

本文概述了在GeoGebra中如何使用笛卡尔或极坐标系输入点和向量。用户可以通过指令栏输入数字和角度,使用工具或指令创建点和向量。在笛卡尔坐标系中,示例如“P=(1,0)”;在极坐标系中,示例如“P=(1;0)”或“v=(5;90°)”。文章还介绍了点和向量的运算,如中点计算和向量模的求解,以及向量积的应用。

目录

    • 一、点和向量
      • 1. 点
      • 2. 向量
    • 二、GeoGebra中输入点和向量
      • 1. 点的输入
        • (1)笛卡尔坐标系输入
        • (2)极坐标输入
        • (3)工具栏输入
      • 2. 向量的输入
        • (1)笛卡尔坐标系输入
        • (2)极坐标系输入
        • (3)工具栏输入
    • 三、GeoGebra中点、向量的计算
      • 1. 点的运算
        • (1)在笛卡尔坐标系中点的运算
        • (2)在极坐标系中点的运算
        • (3)在极坐标系中点运算的含义
      • 2. 向量的运算
        • (1)在笛卡尔坐标系中向量的运算
        • (2)在极坐标系中向量的运算
    • 五、文章最后

一、点和向量

在数学中,点和向量是基本的几何概念,用于描述空间中的位置和方向。

1. 点

点是几何空间中的基本元素之一,用来表示特定位置或位置的集合。在笛卡尔坐标系中,点可以用一对有序数对 (x,y)(x,y) 来表示,其中 xx
表示点在 x 轴上的坐标,yy 表示点在 y 轴上的坐标;例如,点 A可以表示为 A=(1,2)。在极坐标系中,点由极径r 和极角 θ 描述,例如,P=(1,45∘) 表示到原点距离为1,与正 x 轴夹角为45度的点。

2. 向量

向量是具有大小和方向的量,在数学和物理中用来表示从一个点到另一个点的箭头或位移。在笛卡尔坐标系中,向量可以用两点之间的差来表示,例如
向量AB=向量B−向量A,表示从点 A 到点 B 的位移向量。在极坐标系中,向量同样由极径和极角来表示,例如 向量v=(r,θ),表示长度为
r ,方向与极角 θ 相同的向量。

二、GeoGebra中输入点和向量

1. 点的输入

点的输入可以分为笛卡尔坐标系输入、极坐标输入、工具输入三种方式:

(1)笛卡尔坐标系输入

这种输入唯一需要注意的就是标签要大写,因为在最新版本的GeoGebra中,如果是小写的点就变成了向量,大写的点才是点;
在这里插入图片描述
在这里插入图片描述

(2)极坐标输入

若需要输入极坐标,建议先切换到极坐标系中。
在这里插入图片描述
极坐标的输入可以用下边这几种方式进行:

P=(1; 0)
p=(1; 90°)
q=(1; ((π)/(4)))
  1. 注意中间的是分号;
  2. 注意如果是角度要写度数;
  3. 注意,没有写度数GeoGebra默认是弧度;
  4. 注意,可以写弧度,π的敲法是直接输入pi就可以了;
(3)工具栏输入

这个就没什么讲的哈,太简单,可以参考下文章:《004-GeoGebra基础篇-GeoGebra的点》
在这里插入图片描述

2. 向量的输入

点的输入可以分为笛卡尔坐标系输入、极坐标输入、工具输入三种方式:

(1)笛卡尔坐标系输入

若在笛卡尔坐标系输入向量,和输入点是一样的,只不过将大写换成小写就可以了。

p=(1,1)

如果我从算式输入行直接复制,会变成这样(说明系统建议这么输入):

p={{1},{1}}

在这里插入图片描述
还有一种方式是两点构成一个向量,这种输入方法为:

Vector[(1, 2), (3, 4)]

在这里插入图片描述

(2)极坐标系输入

大写的字母输入出来是极坐标点,小写的字母输入后就是极坐标向量了。

q=(2; ((π)/(6)))

在这里插入图片描述当然,上边的向量是基于原点,非基于原点的向量创建如下所示:

A = (r1; θ1)
B = (r2; θ2)
u = Vector[A, B]

(3)工具栏输入

在这里插入图片描述

注意,如果是极坐标的向量,不建议使用工具输入,因为输入的向量本质是笛卡尔坐标系的内容,我们一起看下算式栏的内容(这可能不是大家想要的):

在这里插入图片描述

如果是笛卡尔坐标系的向量,倒是可以采用这种方式,但需要注意,系统默认给我们设置了点,并使用了Vector向量

A=Intersect(xAxis,yAxis)
B=(0.6,0.4)
u=Vector(A,B)

在这里插入图片描述

三、GeoGebra中点、向量的计算

1. 点的运算

(1)在笛卡尔坐标系中点的运算

,点的运算目前主要集中在加、减、乘、除之上,可以研究下这几句算式:

A=(0,0)
B=(6,0)
M1=A+B //(6,0)
M2=A-B //(-6,0)
M3=A+(2,2)	// (2,2)
M4=M3/2	//(1,1)

汇总来看,在GeoGebra中,点可以直接加减,十分方便。

另外需要注意,在GeoGebra中可以使用预留的函数x()、y(),这个在作图过程中非常实用,比如x(M4)=1

(2)在极坐标系中点的运算

在极坐标系中,点的运算也主要集中在加、减、乘、除之上:

P=(2; ((π)/(4)))
Q=(3; ((π)/(3)))
N1=P+Q
N2=P-Q
N3=Q-P
N4=P*2

在这里插入图片描述

(3)在极坐标系中点运算的含义

关于相加

在极坐标系中,两个极坐标点相加的含义是将它们表示的向量相加。每个极坐标点可以用一个长度(模)和一个方向角(角度或弧度)来描述。

具体地说,如果有两个极坐标点 ( r 1 , θ 1 ) (r_1, \theta_1) (r1,θ1) ( r 2 , θ 2 ) (r_2, \theta_2) (r2,θ2),它们分别表示长度为 r 1 r_1 r1 r 2 r_2 r2,方向角为 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2的向量。
将这两个向量相加得到的结果向量的极坐标可以通过以下公式计算:
( r 1 , θ 1 ) + ( r 2 , θ 2 ) = ( r 1 2 + r 2 2 + 2 r 1 r 2 cos ⁡ ( θ 2 − θ 1 ) ,   θ 1 + tan ⁡ − 1 ( r 2 sin ⁡ ( θ 2 − θ 1 ) r 1 + r 2 cos ⁡ ( θ 2 − θ 1 ) ) ) (r_1, \theta_1) + (r_2, \theta_2) = \left( \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_2 - \theta_1)}, \ \theta_1 + \tan^{-1} \left( \frac{r_2\sin(\theta_2 - \theta_1)}{r_1 + r_2\cos(\theta_2 - \theta_1)} \right) \right) (r1,θ1)+(r2,θ2)=(r12+r22+2r1r2cos(θ2θ1) , θ1+tan1(r1+r2cos(θ2θ1)r2sin(θ2θ1)))

这里, r 1 2 + r 2 2 + 2 r 1 r 2 cos ⁡ ( θ 2 − θ 1 ) \sqrt{r_1^2 + r_2^2 + 2r_1r_2\cos(\theta_2 - \theta_1)} r12+r22+2r1r2cos(θ2θ1) 是结果向量的长度, θ 1 + tan ⁡ − 1 ( r 2 sin ⁡ ( θ 2 − θ 1 ) r 1 + r 2 cos ⁡ ( θ 2 − θ 1 ) ) \theta_1 + \tan^{-1} \left( \frac{r_2\sin(\theta_2 - \theta_1)}{r_1 + r_2\cos(\theta_2 - \theta_1)} \right) θ1+tan1(r1+r2cos(θ2θ1)r2sin(θ2θ1))是结果向量的方向角。

因此,两个极坐标点相加的含义是将它们表示的两个向量进行向量加法,得到一个新的向量,其长度和方向角是根据上述公式计算得到的。

关于相减

极坐标系统中点的表示法是用极径(半径 r r r)和极角(角度 θ \theta θ)来描述的。在极坐标中,点的相减运算通常指的是将两个极坐标点相减并得到一个新的向量或极坐标点,这涉及到向量运算的转换。我们需要将极坐标转换为笛卡尔坐标进行运算,然后再将结果转换回极坐标。

具体步骤如下:

将极坐标点转换为笛卡尔坐标:
对于点 A A A ( ( ( r 1 , θ 1 r_1, \theta_1 r1,θ1),对应的笛卡尔坐标为: A x = r 1 cos ⁡ θ 1 , A y = r 1 sin ⁡ θ 1 A_x = r_1 \cos \theta_1, \quad A_y = r_1 \sin \theta_1 Ax=r1cosθ1,Ay=r1sinθ1对于点 B B B ( ( ( r 2 , θ 2 r_2, \theta_2 r2,θ2),对应的笛卡尔坐标为: B x = r 2 cos ⁡ θ 2 , B y = r 2 sin ⁡ θ 2 B_x = r_2 \cos \theta_2, \quad B_y = r_2 \sin \theta_2 Bx=r2cosθ2,By=r2sinθ2进行点的相减运算(笛卡尔坐标系中):
新点 C C C的坐标为: C x = A x − B x , C y = A y − B y C_x = A_x - B_x, \quad C_y = A_y - B_y Cx=AxBx,Cy=AyBy 将结果转换回极坐标:
新点 C C C的极径 r c r_c rc和极角 θ c \theta_c θc计算如下: r c = C x 2 + C y 2 , θ c = arctan ⁡ 2 ( C y , C x ) r_c = \sqrt{C_x^2 + C_y^2}, \quad \theta_c = \arctan2(C_y, C_x) rc=Cx2+Cy2 ,θc=arctan2(Cy,Cx)因此,极坐标点相减的运算实际上是通过笛卡尔坐标系中的向量减法来实现的,并且结果也是一个向量,表示从一个点指向另一个点的方向和距离。

通过这种方式,你可以理解为极坐标点的相减运算在几何上是表示从一个点到另一个点的向量。

2. 向量的运算

(1)在笛卡尔坐标系中向量的运算

在GeoGebra中,笛卡尔坐标系下向量的运算可以通过图形界面和命令行两种方式进行,因为图形界面过于简单(直接拖动出一个向量或者是新建俩点再拖向量)这里就不过多赘述了,主要讲一下如何通过命令行方式进行操作。

接下来向量的运算以这个为基础。
在这里插入图片描述

加、减、标量乘法

u=p+q
v=p-q
w=q*2

在这里插入图片描述

点积

理论上需要这么输入

a=Dot(p,q)

实际上只需要这么输入就可以了(默认是点积)

a=pq

叉乘(只适用于三维向量,这里不作举例)

Cross[u, v]

向量的长度

a=Length(p)

在这里插入图片描述

向量的单位化

u=UnitVector(p)

在这里插入图片描述

(2)在极坐标系中向量的运算

尽管GeoGebra主要以笛卡尔坐标系操作为主,但我们可以使用一些方法在极坐标系中进行向量运算。假设我们有两个极坐标系中的向量:向量 A \mathbf{A} A的极坐标是 ( r 1 , θ 1 ) (r_1, \theta_1) (r1,θ1) = = = ( 5 , 4 5 ∘ ) (5, 45^\circ) (5,45) 向量 B \mathbf{B} B的极坐标是 ( r 2 , θ 2 ) (r_2, \theta_2) (r2,θ2) = = = ( 3 , 12 0 ∘ ) (3, 120^\circ) (3,120)

  1. 将极坐标转换为笛卡尔坐标:
    A x = r 1 ⋅ cos ⁡ ( θ 1 ) A_x = r_1 \cdot \cos(\theta_1) Ax=r1cos(θ1) A y = r 1 ⋅ sin ⁡ ( θ 1 ) A_y = r_1 \cdot \sin(\theta_1) Ay=r1sin(θ1) B x = r 2 ⋅ cos ⁡ ( θ 2 ) B_x = r_2 \cdot \cos(\theta_2) Bx=r2cos(θ2) B y = r 2 ⋅ sin ⁡ ( θ 2 ) B_y = r_2 \cdot \sin(\theta_2) By=r2sin(θ2)计算:
    θ 1 = 4 5 ∘ = π 4 弧度 \theta_1 = 45^\circ = \frac{\pi}{4}弧度 θ1=45=4π弧度
    θ 2 = 12 0 ∘ = 2 π 3 弧度 \theta_2 = 120^\circ = \frac{2\pi}{3}弧度 θ2=120=32π弧度
    对于向量 A \mathbf{A} A
    A x = 5 ⋅ cos ⁡ ( π 4 ) = 5 ⋅ 2 2 ≈ 3.54 A_x = 5 \cdot \cos\left(\frac{\pi}{4}\right) = 5 \cdot \frac{\sqrt{2}}{2} \approx 3.54 Ax=5cos(4π)=522 3.54 A y = 5 ⋅ sin ⁡ ( π 4 ) = 5 ⋅ 2 2 ≈ 3.54 A_y = 5 \cdot \sin\left(\frac{\pi}{4}\right) = 5 \cdot \frac{\sqrt{2}}{2} \approx 3.54 Ay=5sin(4π)=522 3.54
    对于向量 B \mathbf{B} B
    B x = 3 ⋅ cos ⁡ ( 2 π 3 ) = 3 ⋅ ( − 1 2 ) = − 1.5 B_x = 3 \cdot \cos\left(\frac{2\pi}{3}\right) = 3 \cdot \left(-\frac{1}{2}\right) = -1.5 Bx=3cos(32π)=3(21)=1.5 B y = 3 ⋅ sin ⁡ ( 2 π 3 ) = 3 ⋅ 3 2 ≈ 2.598 B_y = 3 \cdot \sin\left(\frac{2\pi}{3}\right) = 3 \cdot \frac{\sqrt{3}}{2} \approx 2.598 By=3sin(32π)=323 2.598
  2. 计算向量和的笛卡尔坐标
    将两个向量的笛卡尔坐标相加:
    C x = A x + B x = 3.54 − 1.5 = 2.04 C_x = A_x + B_x = 3.54 - 1.5 = 2.04 Cx=Ax+Bx=3.541.5=2.04 C y = A y + B y = 3.54 + 2.598 = 6.138 C_y = A_y + B_y = 3.54 + 2.598 = 6.138 Cy=Ay+By=3.54+2.598=6.138
  3. 将结果转换回极坐标
    计算新的极径 r r r和极角 θ \theta θ : : r = C x 2 + C y 2 = 2.0 4 2 + 6.13 8 2 ≈ 4.16 + 37.66 ≈ 41.82 ≈ 6.46 r = \sqrt{C_x^2 + C_y^2} = \sqrt{2.04^2 + 6.138^2} \approx \sqrt{4.16 + 37.66} \approx \sqrt{41.82} \approx 6.46 r=Cx2+Cy2 =2.042+6.1382 4.16+37.66 41.82 6.46 θ = arctan ⁡ 2 ( C y , C x ) = arctan ⁡ 2 ( 6.138 , 2.04 ) ≈ 71. 6 ∘ \theta = \arctan2(C_y, C_x) = \arctan2(6.138, 2.04) \approx 71.6^\circ θ=arctan2(Cy,Cx)=arctan2(6.138,2.04)71.6
  4. 结果
    因此,两个向量在极坐标系中的和为 ( r , θ ) (r, \theta) (r,θ) ≈ ≈ ( 6.46 , 71. 6 ∘ ) (6.46, 71.6^\circ) (6.46,71.6) 。 。

五、文章最后

欢迎关注微信公众号“第五智能”,代码+设计,让我们走在时代前沿,若有任何问题随时咨询。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886805.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spark SQL分析层优化

导读:本期是《深入浅出Apache Spark》系列分享的第四期分享,第一期分享了Spark core的概念、原理和架构,第二期分享了Spark SQL的概念和原理,第三期则为Spark SQL解析层的原理和优化案例。本次分享内容主要是Spark SQL分析层的原理…

828华为云征文|华为云 Flexus X 实例之家庭娱乐中心搭建

话接上文《828华为云征文|华为云Flexus X实例初体验》,这次我们利用手头的 Flexus X 实例来搭建家庭影音中心和密码管理环境。 前置环境 为了方便小白用户甚至运维人员,我觉得现阶段的宝塔面板 和 1Panel 都是不错的选择。我这里以宝塔为例…

《软件工程概论》作业一:新冠疫情下软件产品设计

课程说明:《软件工程概论》为浙江科技学院2018级软件工程专业在大二下学期开设的必修课。课程使用《软件工程导论(第6版)》(张海藩等编著,清华大学出版社)作为教材。以《软件设计文档国家标准GBT8567-2006》…

加密与安全_TOTP 一次性密码生成算法

文章目录 PreTOTP是什么TOTP 算法工作原理TOTP 生成公式TOTP 与 HOTP 的对比Code生成TOTP验证 TOTP使用场景小结 TOTP 与 HOTP 的主要区别TOTP 与 HOTP应用场景比较TOTP 与 HOTP安全性分析 Pre 加密与安全_HTOP 一次性密码生成算法 https://github.com/samdjstevens/java-tot…

基于Springboot vue应急物资供应管理系统设计与实现

博主介绍:专注于Java(springboot ssm 等开发框架) vue .net php python(flask Django) 小程序 等诸多技术领域和毕业项目实战、企业信息化系统建设,从业十五余年开发设计教学工作☆☆☆ 精彩专栏推荐订阅☆☆☆☆☆不然下次找…

剖解最小栈

最小栈 思路: 1. 首先实例化两个栈,分别是stack用于存放数据,minstack用于存放最小值 2. 将第一个元素压入两个栈中,判断此时若minStack栈中为空,则表示压入的为第一个数据 if ( minStack.empty () ) { minStack.pus…

【GT240X】【04】你必须知道的 50 多个 Linux 命令

文章目录 一、介绍二、五十个linux命令一览表三、50个命令详解四、结论 你必须知道的 50 多个 Linux 命令 一、介绍 你经常使用 Linux 命令?今天,我们将介绍 50 多个你必须知道的 Linux 命令。下面列出的命令是一些最有用和最常用的 Linux 命令&#x…

IDEA 最新版创建 Sping Boot 项目没有 JDK8 选项的解决方案

问题 今天新建一个 Java 项目写 demo 时,发现 Idea 上只能勾选 Java 17、21、23 三个版本 解决方案 IDEA 页面创建 Spring 项目,其实是访问 spring initializr 去创建项目。我们可以通过阿里云国服去间接创建 Spring 项目。服务器 URL 地址替换为 ht…

蓝桥杯【物联网】零基础到国奖之路:十四. 扩展模块之温湿度传感器

蓝桥杯【物联网】零基础到国奖之路:十四. 扩展模块之温湿度传感器 第一节 硬件解读第二节 CubeMX配置第三节 模版代码 第一节 硬件解读 STS3x-DIS是sensirion新一代温湿度传感器。精度较高,速度较快。SHT3x内部集成了湿度传感器和温度传感器,ADC采样输入…

[网络]抓包工具介绍 tcpdump

一、tcpdump tcpdump是一款基于命令行的网络抓包工具,可以捕获并分析传输到和从网络接口流入和流出的数据包。 1.1 安装 tcpdump 通常已经预装在大多数 Linux 发行版中。如果没有安装,可以使用包管理器 进行安装。例如 Ubuntu,可以使用以下…

9-贪心算法

参考:代码随想录 题目分类大纲如下: 贪心算法理论基础 什么是贪心? 贪心的本质是选择每一阶段的局部最优,从而达到全局最优。 贪心的套路(什么时候用贪心) 贪心算法并没有固定的套路,说白了…

OpenSource - 开源WAF_SamWaf

文章目录 PreSafeLine VS SamWaf开发初衷软件介绍架构界面主要功能 使用说明下载最新版本快速启动WindowsLinuxDocker 启动访问升级指南自动升级手动升级 在线文档 代码相关代码托管介绍和编译已测试支持的平台测试效果 安全策略问题反馈许可证书贡献代码 Pre Nginx - 集成Mod…

Java继承、final/protected说明、super/this辨析

目录 1.什么是继承 2.继承的特征 3.子类构造方法 4.super和this辨析 5.再谈初始化 6.protected关键字用法说明 7.final的用法说明 1.什么是继承 上面的这个animal就是基类,我们的这个dog和bird都是继承这个基类的特征,使用的是extends这个关键字&a…

Python编写的贪吃蛇小游戏

安装包 pip install pygame完整代码 import pygame import randompygame.init()# 定义颜色 white (255, 255, 255) black (0, 0, 0) red (213, 50, 80) green (0, 255, 0) blue (50, 153, 213)# 定义屏幕大小 dis_width 800 dis_height 600dis pygame.display.set_mo…

【大数据入门 | Hive】函数{单行函数,集合函数,炸裂函数,窗口函数}

1. 函数简介: Hive会将常用的逻辑封装成函数给用户进行使用,类似于Java中的函数。 好处:避免用户反复写逻辑,可以直接拿来使用。 重点:用户需要知道函数叫什么,能做什么。 Hive提供了大量的内置函数&am…

Redis操作常用API

说明&#xff1a;Redis应用于java项目中&#xff0c;操作Redis数据可以使用API&#xff0c;相较于命令行更方便。使用前&#xff0c;需先添加依赖。 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-re…

云栖实录 | 开源大数据全面升级:Native 核心引擎、Serverless 化、湖仓架构引领云上大数据发展

本文根据2024云栖大会实录整理而成&#xff0c;演讲信息如下&#xff1a; 演讲人&#xff1a; 王 峰 | 阿里云智能集团研究员、开源大数据平台负责人 李 钰&#xff5c;阿里云智能集团资深技术专家 范 振&#xff5c;阿里云智能集团高级技术专家 李劲松&#xff5c;阿里云…

【机器学习基础】Transformer学习

Transformer学习 一、输入1. Word Embedding2. Positional EncodingPositional Encoding的计算方法二、自注意力机制二、Add & Norm层1. Add 代表残差连接(Residual Connection)2. Norm= Normalization归一化三、FeedForward层其他资料一、输入 第一步:获取输入句子的每…

基于微信小程序的四六级词汇+ssm(lw+演示+源码+运行)

摘 要 随着我国经济迅速发展&#xff0c;人们对手机的需求越来越大&#xff0c;各种手机软件也都在被广泛应用&#xff0c;但是对于手机进行数据信息管理&#xff0c;对于手机的各种软件也是备受用户的喜爱&#xff0c;四六级词汇小程序被用户普遍使用&#xff0c;为方便用户能…

银河麒麟V10 SP1如何进入救援模式?

银河麒麟V10 SP1如何进入救援模式&#xff1f; 1、准备工作2、进入BIOS/UEFI进入救援模式注意事项 &#x1f496;The Begin&#x1f496;点点关注&#xff0c;收藏不迷路&#x1f496; 在使用银河麒麟高级服务器操作系统V10 SP1时&#xff0c;如果遇到系统无法正常启动或需要进…