基于yolov8深度学习的120种犬类检测与识别系统python源码+onnx模型+评估指标曲线+精美GUI界面目标检测狗类检测犬类识别系统

【算法介绍】

基于YOLOv8深度学习的120种犬类检测与识别系统是一款功能强大的工具,该系统利用YOLOv8深度学习框架,通过21583张图片的训练,实现了对120种犬类的精准检测与识别。

该系统基于Python与PyQt5开发,具有简洁的UI界面,支持图片、视频以及摄像头三种方式进行目标检测,并能够将检测结果进行保存。在检测过程中,系统能够实时显示目标位置、目标总数、置信度以及用时等信息,为用户提供直观、清晰的检测结果。

该系统在多个领域具有广泛的应用价值。在公共安全领域,警方和安保人员可以利用它快速识别搜救犬、警犬以及潜在的威胁性狗类,提高工作效率和响应速度。在宠物行业,它有助于宠物店、兽医诊所和动物收容所更准确地记录和管理犬只信息,提供更个性化的服务。此外,它还可以用于城市管理中监控流浪狗的数量和分布,处理公共卫生问题和安全风险,以及牧场和农场中牧羊犬的精准管理等。

总之,基于YOLOv8深度学习的120种犬类检测与识别系统是一款高效、准确、易用的工具,它的出现将极大地推动犬类检测与识别技术的发展,为多个领域带来便利和价值。

【效果展示】

【测试环境】

windows10
anaconda3+python3.8
torch==1.9.0+cu111
ultralytics==8.2.95

【模型可以检测出类别】

affenpinscher
afghan_hound
african_hunting_dog
airedale
american_staffordshire_terrier
appenzeller
australian_terrier
basenji
basset
beagle
bedlington_terrier
bernese_mountain_dog
black-and-tan_coonhound
blenheim_spaniel
bloodhound
bluetick
border_collie
border_terrier
borzoi
boston_bull
bouvier_des_flandres
boxer
brabancon_griffon
briard
brittany_spaniel
bull_mastiff
cairn
cardigan
chesapeake_bay_retriever
chihuahua
chow
clumber
cocker_spaniel
collie
curly-coated_retriever
dandie_dinmont
dhole
dingo
doberman
english_foxhound
english_setter
english_springer
entlebucher
eskimo_dog
flat-coated_retriever
french_bulldog
german_shepherd
german_short-haired_pointer
giant_schnauzer
golden_retriever
gordon_setter
great_dane
great_pyrenees
greater_swiss_mountain_dog
groenendael
ibizan_hound
irish_setter
irish_terrier
irish_water_spaniel
irish_wolfhound
italian_greyhound
japanese_spaniel
keeshond
kelpie
kerry_blue_terrier
komondor
kuvasz
labrador_retriever
lakeland_terrier
leonberg
lhasa
malamute
malinois
maltese_dog
mexican_hairless
miniature_pinscher
miniature_poodle
miniature_schnauzer
newfoundland
norfolk_terrier
norwegian_elkhound
norwich_terrier
old_english_sheepdog
otterhound
papillon
pekinese
pembroke
pomeranian
pug
redbone
rhodesian_ridgeback
rottweiler
saint_bernard
saluki
samoyed
schipperke
scotch_terrier
scottish_deerhound
sealyham_terrier
shetland_sheepdog
shih-tzu
siberian_husky
silky_terrier
soft-coated_wheaten_terrier
staffordshire_bullterrier
standard_poodle
standard_schnauzer
sussex_spaniel
tibetan_mastiff
tibetan_terrier
toy_poodle
toy_terrier
vizsla
walker_hound
weimaraner
welsh_springer_spaniel
west_highland_white_terrier
whippet
wire-haired_fox_terrier
yorkshire_terrier

【训练信息】

参数
训练集图片数18945
验证集图片数1738
训练map73.5%
训练精度(Precision)69.8%
训练召回率(Recall)67.9%
【部分实现源码】
class Ui_MainWindow(QtWidgets.QMainWindow):
    signal = QtCore.pyqtSignal(str, str)
 
    def setupUi(self):
        self.setObjectName("MainWindow")
        self.resize(1280, 728)
        self.centralwidget = QtWidgets.QWidget(self)
        self.centralwidget.setObjectName("centralwidget")
 
        self.weights_dir = './weights'
 
        self.picture = QtWidgets.QLabel(self.centralwidget)
        self.picture.setGeometry(QtCore.QRect(260, 10, 1010, 630))
        self.picture.setStyleSheet("background:black")
        self.picture.setObjectName("picture")
        self.picture.setScaledContents(True)
        self.label_2 = QtWidgets.QLabel(self.centralwidget)
        self.label_2.setGeometry(QtCore.QRect(10, 10, 81, 21))
        self.label_2.setObjectName("label_2")
        self.cb_weights = QtWidgets.QComboBox(self.centralwidget)
        self.cb_weights.setGeometry(QtCore.QRect(10, 40, 241, 21))
        self.cb_weights.setObjectName("cb_weights")
        self.cb_weights.currentIndexChanged.connect(self.cb_weights_changed)
 
        self.label_3 = QtWidgets.QLabel(self.centralwidget)
        self.label_3.setGeometry(QtCore.QRect(10, 70, 72, 21))
        self.label_3.setObjectName("label_3")
        self.hs_conf = QtWidgets.QSlider(self.centralwidget)
        self.hs_conf.setGeometry(QtCore.QRect(10, 100, 181, 22))
        self.hs_conf.setProperty("value", 25)
        self.hs_conf.setOrientation(QtCore.Qt.Horizontal)
        self.hs_conf.setObjectName("hs_conf")
        self.hs_conf.valueChanged.connect(self.conf_change)
        self.dsb_conf = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_conf.setGeometry(QtCore.QRect(200, 100, 51, 22))
        self.dsb_conf.setMaximum(1.0)
        self.dsb_conf.setSingleStep(0.01)
        self.dsb_conf.setProperty("value", 0.25)
        self.dsb_conf.setObjectName("dsb_conf")
        self.dsb_conf.valueChanged.connect(self.dsb_conf_change)
        self.dsb_iou = QtWidgets.QDoubleSpinBox(self.centralwidget)
        self.dsb_iou.setGeometry(QtCore.QRect(200, 160, 51, 22))
        self.dsb_iou.setMaximum(1.0)
        self.dsb_iou.setSingleStep(0.01)
        self.dsb_iou.setProperty("value", 0.45)
        self.dsb_iou.setObjectName("dsb_iou")
        self.dsb_iou.valueChanged.connect(self.dsb_iou_change)
        self.hs_iou = QtWidgets.QSlider(self.centralwidget)
        self.hs_iou.setGeometry(QtCore.QRect(10, 160, 181, 22))
        self.hs_iou.setProperty("value", 45)
        self.hs_iou.setOrientation(QtCore.Qt.Horizontal)
        self.hs_iou.setObjectName("hs_iou")
        self.hs_iou.valueChanged.connect(self.iou_change)
        self.label_4 = QtWidgets.QLabel(self.centralwidget)
        self.label_4.setGeometry(QtCore.QRect(10, 130, 72, 21))
        self.label_4.setObjectName("label_4")
        self.label_5 = QtWidgets.QLabel(self.centralwidget)
        self.label_5.setGeometry(QtCore.QRect(10, 210, 72, 21))
        self.label_5.setObjectName("label_5")
        self.le_res = QtWidgets.QTextEdit(self.centralwidget)
        self.le_res.setGeometry(QtCore.QRect(10, 240, 241, 400))
        self.le_res.setObjectName("le_res")
        self.setCentralWidget(self.centralwidget)
        self.menubar = QtWidgets.QMenuBar(self)
        self.menubar.setGeometry(QtCore.QRect(0, 0, 1110, 30))
        self.menubar.setObjectName("menubar")
        self.setMenuBar(self.menubar)
        self.statusbar = QtWidgets.QStatusBar(self)
        self.statusbar.setObjectName("statusbar")
        self.setStatusBar(self.statusbar)
        self.toolBar = QtWidgets.QToolBar(self)
        self.toolBar.setToolButtonStyle(QtCore.Qt.ToolButtonTextBesideIcon)
        self.toolBar.setObjectName("toolBar")
        self.addToolBar(QtCore.Qt.TopToolBarArea, self.toolBar)
        self.actionopenpic = QtWidgets.QAction(self)
        icon = QtGui.QIcon()
        icon.addPixmap(QtGui.QPixmap(":/images/1.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionopenpic.setIcon(icon)
        self.actionopenpic.setObjectName("actionopenpic")
        self.actionopenpic.triggered.connect(self.open_image)
        self.action = QtWidgets.QAction(self)
        icon1 = QtGui.QIcon()
        icon1.addPixmap(QtGui.QPixmap(":/images/2.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action.setIcon(icon1)
        self.action.setObjectName("action")
        self.action.triggered.connect(self.open_video)
        self.action_2 = QtWidgets.QAction(self)
        icon2 = QtGui.QIcon()
        icon2.addPixmap(QtGui.QPixmap(":/images/3.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.action_2.setIcon(icon2)
        self.action_2.setObjectName("action_2")
        self.action_2.triggered.connect(self.open_camera)
 
        self.actionexit = QtWidgets.QAction(self)
        icon3 = QtGui.QIcon()
        icon3.addPixmap(QtGui.QPixmap(":/images/4.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
        self.actionexit.setIcon(icon3)
        self.actionexit.setObjectName("actionexit")
        self.actionexit.triggered.connect(self.exit)
 
        self.toolBar.addAction(self.actionopenpic)
        self.toolBar.addAction(self.action)
        self.toolBar.addAction(self.action_2)
        self.toolBar.addAction(self.actionexit)
 
        self.retranslateUi()
        QtCore.QMetaObject.connectSlotsByName(self)
        self.init_all()

【使用步骤】

使用步骤:
(1)首先根据官方框架https://github.com/ultralytics/ultralytics安装教程安装好yolov8环境,并安装好pyqt5
(2)切换到自己安装的yolov8环境后,并切换到源码目录,执行python main.py即可运行启动界面,进行相应的操作即可

【提供文件】

python源码
yolov8s.onnx模型(不提供pytorch模型)
训练的map,P,R曲线图(在weights\results.png)
测试图片(在test_img文件夹下面)

【源码下载地址】

https://download.csdn.net/download/FL1623863129/89831387

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886324.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

程计软考题2-编译、解释程序翻译阶段

(一) 编译器和解释器的工作阶段 1.编译和解释与源程序的区别 分析:编译和解释是语言处理的两种基本方式。 编译过程包括词法分析、语法分析、语义分析、中间代码生成、代码优化和目标代码生成等阶段,以及符号表管理和出错处理模块。 解释过程在词法、语…

数字经济与新质生产力:地理信息与遥感视角下的深度分析

在数字化浪潮的推动下,我们正见证着生产力的一次历史性飞跃。数字经济如何重塑生产力的三大要素:劳动对象、劳动资料和劳动者?让我们来深度分析数字经济如何推动新质生产力的发展。 一、数字经济与地理信息的融合 地理信息与遥感技术是数字…

【数据结构】什么是红黑树(Red Black Tree)?

🦄个人主页:修修修也 🎏所属专栏:数据结构 ⚙️操作环境:Visual Studio 2022 目录 📌红黑树的概念 📌红黑树的操作 🎏红黑树的插入操作 🎏红黑树的删除操作 结语 📌红黑树的概念 我们之前学过了…

PyGWalker:让你的Pandas数据可视化更简单,快速创建数据可视化网站

1、PyGWalker应用: 在数据分析的过程中,数据的探索和可视化是至关重要的环节,如何高效地将分析结果展示给团队、客户,甚至是公众,是很多数据分析师和开发者面临的挑战,接下来介绍的两大工具组合——PyGWalker与Streamlit,可以帮助用户轻松解决这个问题,即使没有复杂的代…

cheese安卓版纯本地离线文字识别插件

目的 cheese自动化平台是一款可以模拟鼠标和键盘操作的自动化工具。它可以帮助用户自动完成一些重复的、繁琐的任务,节省大量人工操作的时间。可以采用Vscode、IDEA编写,支持Java、Python、nodejs、GO、Rust、Lua。cheese也包含图色功能,识别…

HarmonyOS鸿蒙 Next 实现协调布局效果

HarmonyOS鸿蒙 Next 实现协调布局效果 ​ 假期愉快! 最近大A 的涨势实在是红的让人晕头转向,不知道各位收益如何,这会是在路上,还是已经到目的地了? 言归正传,最近有些忙,关于鸿蒙的实践系列有些脱节了,…

TCP --- 确认应答机制以及三次握手四次挥手

序言 在前一篇文章中,我们介绍了 UDP协议 (点击查看)👈,该协议给我们的感觉就两个字 — 简单,只是将我们的数据进行简单的添加报头然后发送。当然使用起来虽然简单,但是否能送到目的地,那就要看网络的状态了…

深度学习——线性神经网络(一、线性回归)

目录 一、线性回归1.1 线性回归的基本元素1.1.1 术语介绍1.1.2 线性模型1.1.3 损失函数1.1.4 解析解1.1.5 随机梯度下降1.1.6 模型预测 1.2 正态分布与平方损失 因为线性神经网络篇幅比较长,就拆成几篇博客分开发布。目录序号保持连贯性。 一、线性回归 回归&#x…

[Linux] Linux 的进程如何调度——Linux的 O(1)进程调度算法

标题:[Linux] Linux 的进程如何调度——优先级与进程调度 个人主页水墨不写bug 目录 一、前言 二、将要出现的概念 1.进程调度队列 2.位图 3.进程的优先级 三、Linux进程的调度过程 1.活动队列(*active指向的队列) 2.过期队列&#…

LeetCode[中等] 763. 划分字母区间

给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。 注意,划分结果需要满足:将所有划分结果按顺序连接,得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度的列表。 思路 贪心…

Centos 7.9 Kubeadm安装k8s1.20.11

一、环境 主机用途192.168.76.140k8s-master1192.168.76.141k8s-node1 二、设置yum源 由于系统已经关闭,可以用centos9尝试 cp /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.bak vi /etc/yum.repos.d/CentOS-Base.repo# 使用阿里云的y…

【动态规划-分组背包】【hard】力扣2218. 从栈中取出 K 个硬币的最大面值和

一张桌子上总共有 n 个硬币 栈 。每个栈有 正整数 个带面值的硬币。 每一次操作中,你可以从任意一个栈的 顶部 取出 1 个硬币,从栈中移除它,并放入你的钱包里。 给你一个列表 piles ,其中 piles[i] 是一个整数数组,分…

FOC电机驱动开发踩坑记录

关键技术 SVPWM电机磁场控制电流采样park变换和Clark变换滑膜观测器(无感FOC) SVPWM电机磁场控制 SVPWM主要思想是通过精确的对UVW三相电流的分时控制,来控制转子的合成力矩,达到目标方向,常用的是6分区的设计&…

浅谈汽车智能座舱如何实现多通道音频

一、引言 随着汽车智能座舱的功能迭代发展,传统的 4 通道、6 通道、8 通道等音响系统难以在满足驾驶场景的需求,未来对于智能座舱音频质量和通道数会越来越高。接下来本文将浅析目前智能座舱如何实现音频功放,以及如何实现多路音频功放方案。…

C语言+单片机

今天内容有点水哈哈&#xff08;忙着练焊铁技术了嘻嘻&#xff09; C语言 简单学习了while语言以及其与for语言的区别和适用方法 .循环结构&#xff1a; 初始化语句条件判断句条件控制句 for语句 for(int1;i<100;i){执行条件} for (int i 1; i < 100; i) {printf(&quo…

leetcode每日一题day22(24.10.2)——准时到达的列车最小时速

思路&#xff1a;这种在有约束条件情况下&#xff0c;求最值或最符合要求的情况&#xff0c;首先是很容易想到&#xff0c;从时速为1开始往后找找到满足条件就输出&#xff0c;但这无疑工程量很大&#xff0c;每种可能的速度都要对列车数组进行遍历&#xff0c; 时间复杂度为C…

Stable Diffusion绘画 | 来训练属于自己的模型:LoRA模型验收

我们每次训练出来的模型&#xff0c;一般都会生成 20-30 个&#xff0c;至于哪个模型符合要求&#xff0c;较为理想呢&#xff1f; 接下来需要对每个 LoRA模型 进行逐一对比测试。 为了测试模型的泛化性&#xff0c;可选择使用一些较为特殊的提示词&#xff0c;看看各个模型对…

828华为云征文 | 云服务器Flexus X实例:向量数据库 pgvector 部署,实现向量检索

目录 一、什么是向量数据库 pgvector &#xff1f; 二、pgvector 部署 2.1 安装 Docker 2.2 拉取镜像 2.3 添加规则 三、pgvector 运行 3.1 运行 pgvector 3.2 连接 pgvector 3.3 pgvector 常见操作 四、总结 本篇文章通过 云服务器Flexus X实例 部署向量数据库 pgve…

安卓13默认使用大鼠标 与配置分析 andriod13默认使用大鼠标 与配置分析

总纲 android13 rom 开发总纲说明 文章目录 1.前言2.问题分析3.代码分析4.代码修改5.彩蛋1.前言 android13里面的鼠标貌似比以前版本的鼠标小了,有些客户想要把这个鼠标改大。这个功能,android有现成的,就在这里,设置 =》无障碍 =》色彩和动画 =》 大号鼠标指针。 我们通过…

Spring注解系列 - @Autowired注解

文章目录 使用总结注入原理Autowired 注入过程InjectionMetadataInjectedElement依赖注入查找过程findAutowireCandidates 缓存注入信息 Resource 注解 使用总结 Autowired注解可以自动将所需的依赖对象注入到类的属性、构造方法或方法中&#xff0c;从而减少手动注入依赖的代…