YOLOv11改进 | 主干篇 | YOLOv11引入MobileNetV4

1. MobileNetV4介绍

1.1  摘要: 我们推出了最新一代的 MobileNet,称为 MobileNetV4 (MNv4),具有适用于移动设备的通用高效架构设计。 在其核心,我们引入了通用倒瓶颈(UIB)搜索块,这是一种统一且灵活的结构,融合了倒瓶颈(IB)、ConvNext、前馈网络(FFN)和新颖的额外深度(ExtraDW)变体。 除了 UIB 之外,我们还推出了 Mobile MQA,这是一个专为移动加速器量身定制的注意力模块,可实现 39% 的显着加速。 还引入了优化的神经架构搜索 (NAS) 配方,提高了 MNv4 搜索效率。 UIB、移动 MQA 和改进的 NAS 配方的集成产生了一套新的 MNv4 模型,这些模型在移动 CPU、DSP、GPU 以及 Apple Neural Engine 和 Google Pixel EdgeTPU 等专用加速器上大多实现 Pareto 最优——这一特性不是 在测试的任何其他模型中都发现了。 最后,为了进一步提高准确性,我们引入了一种新颖的蒸馏技术。 通过这项技术的增强,我们的 MNv4-Hybrid-Large 模型可提供 87% ImageNet-1K 准确率,Pixel 8 EdgeTPU 运行时间仅为 3.8 毫秒。

官方论文地址:https://arxiv.org/pdf/2404.10518

官方代码地址:代码

1.2  简单介绍:  

          MobileNetV4(MNv4)是针对移动设备推出的新一代MobileNet模型,它采用了通用高效的架构设计。核心部分包括了Universal Inverted Bottleneck (UIB) 搜索模块、专为移动加速器定制的Mobile MQA注意力块以及通过优化的神经结构搜索(NAS)配方。这些组件的结合使得MNv4模型在多种硬件平台上实现了大多数Pareto最优性能。

          UIB模块是MNv4的核心,它是一个统一且灵活的结构,融合了Inverted Bottleneck (IB), ConvNext, Feed Forward Network (FFN) 以及一个新的Extra Depthwise (ExtraDW) 变体。这种结构的设计不仅简化了模型构建过程,还提高了在不同硬件上的兼容性和效率。

           此外,MNv4还包括一个优化的NAS配方,这一配方显著提高了搜索效率并促成了更大规模的模型创建。通过引入一个离线蒸馏数据集来减少NAS奖励测量中的噪声,从而改善了模型质量。

            Mobile MQA是MNv4的另一个关键组件,这是一个为移动加速器量身定制的注意力块,提供了超过39%的推理加速。MQA通过使用共享的头部来简化多头注意力机制(MHSA),这减少了内存访问的需求,从而提高了操作强度,并在移动设备上表现出色。

1.3  MobileNetV4模块结构图

2. 核心代码

from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
 
__all__ = ['MobileNetV4ConvLarge', 'MobileNetV4ConvSmall', 'MobileNetV4ConvMedium', 'MobileNetV4HybridMedium', 'MobileNetV4HybridLarge']
 
MNV4ConvSmall_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 32, 3, 2],
            [32, 32, 1, 1]
        ]
    },
    "layer2": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [32, 96, 3, 2],
            [96, 64, 1, 1]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [64, 96, 5, 5, True, 2, 3],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 0, 3, True, 1, 2],
            [96, 96, 3, 0, True, 1, 4],
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 6,
        "block_specs": [
            [96,  128, 3, 3, True, 2, 6],
            [128, 128, 5, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 4],
            [128, 128, 0, 5, True, 1, 3],
            [128, 128, 0, 3, True, 1, 4],
            [128, 128, 0, 3, True, 1, 4],
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [128, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4ConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 0, True, 1, 4],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 3, 0, True, 1, 4],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 0, 0, True, 1, 4],
            [256, 256, 5, 0, True, 1, 2]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4ConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 13,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
def mhsa(num_heads, key_dim, value_dim, px):
    if px == 24:
        kv_strides = 2
    elif px == 12:
        kv_strides = 1
    query_h_strides = 1
    query_w_strides = 1
    use_layer_scale = True
    use_multi_query = True
    use_residual = True
    return [
        num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
        use_layer_scale, use_multi_query, use_residual
    ]
 
MNV4HybridConvMedium_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 32, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [32, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 80, 3, 5, True, 2, 4],
            [80, 80, 3, 3, True, 1, 2]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 8,
        "block_specs": [
            [80,  160, 3, 5, True, 2, 6],
            [160, 160, 0, 0, True, 1, 2],
            [160, 160, 3, 3, True, 1, 4],
            [160, 160, 3, 5, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 3, True, 1, 4, mhsa(4, 64, 64, 24)],
            [160, 160, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 12,
        "block_specs": [
            [160, 256, 5, 5, True, 2, 6],
            [256, 256, 5, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 3, 5, True, 1, 4],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 3, 5, True, 1, 2],
            [256, 256, 0, 0, True, 1, 2],
            [256, 256, 0, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 3, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 5, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4, mhsa(4, 64, 64, 12)],
            [256, 256, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [256, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MNV4HybridConvLarge_BLOCK_SPECS = {
    "conv0": {
        "block_name": "convbn",
        "num_blocks": 1,
        "block_specs": [
            [3, 24, 3, 2]
        ]
    },
    "layer1": {
        "block_name": "fused_ib",
        "num_blocks": 1,
        "block_specs": [
            [24, 48, 2, 4.0, True]
        ]
    },
    "layer2": {
        "block_name": "uib",
        "num_blocks": 2,
        "block_specs": [
            [48, 96, 3, 5, True, 2, 4],
            [96, 96, 3, 3, True, 1, 4]
        ]
    },
    "layer3": {
        "block_name": "uib",
        "num_blocks": 11,
        "block_specs": [
            [96,  192, 3, 5, True, 2, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 3, True, 1, 4],
            [192, 192, 3, 5, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 5, 3, True, 1, 4, mhsa(8, 48, 48, 24)],
            [192, 192, 3, 0, True, 1, 4]
        ]
    },
    "layer4": {
        "block_name": "uib",
        "num_blocks": 14,
        "block_specs": [
            [192, 512, 5, 5, True, 2, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 0, True, 1, 4],
            [512, 512, 5, 3, True, 1, 4],
            [512, 512, 5, 5, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4, mhsa(8, 64, 64, 12)],
            [512, 512, 5, 0, True, 1, 4]
        ]
    },
    "layer5": {
        "block_name": "convbn",
        "num_blocks": 2,
        "block_specs": [
            [512, 960, 1, 1],
            [960, 1280, 1, 1]
        ]
    }
}
 
MODEL_SPECS = {
    "MobileNetV4ConvSmall": MNV4ConvSmall_BLOCK_SPECS,
    "MobileNetV4ConvMedium": MNV4ConvMedium_BLOCK_SPECS,
    "MobileNetV4ConvLarge": MNV4ConvLarge_BLOCK_SPECS,
    "MobileNetV4HybridMedium": MNV4HybridConvMedium_BLOCK_SPECS,
    "MobileNetV4HybridLarge": MNV4HybridConvLarge_BLOCK_SPECS
}
 
 
def make_divisible(
        value: float,
        divisor: int,
        min_value: Optional[float] = None,
        round_down_protect: bool = True,
) -> int:
    """
    This function is copied from here
    "https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_layers.py"
    This is to ensure that all layers have channels that are divisible by 8.
    Args:
        value: A `float` of original value.
        divisor: An `int` of the divisor that need to be checked upon.
        min_value: A `float` of  minimum value threshold.
        round_down_protect: A `bool` indicating whether round down more than 10%
        will be allowed.
    Returns:
        The adjusted value in `int` that is divisible against divisor.
    """
    if min_value is None:
        min_value = divisor
    new_value = max(min_value, int(value + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if round_down_protect and new_value < 0.9 * value:
        new_value += divisor
    return int(new_value)
 
 
def conv_2d(inp, oup, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
    conv = nn.Sequential()
    padding = (kernel_size - 1) // 2
    conv.add_module('conv', nn.Conv2d(inp, oup, kernel_size, stride, padding, bias=bias, groups=groups))
    if norm:
        conv.add_module('BatchNorm2d', nn.BatchNorm2d(oup))
    if act:
        conv.add_module('Activation', nn.ReLU6())
    return conv
 
 
class InvertedResidual(nn.Module):
    def __init__(self, inp, oup, stride, expand_ratio, act=False, squeeze_excitation=False):
        super(InvertedResidual, self).__init__()
        self.stride = stride
        assert stride in [1, 2]
        hidden_dim = int(round(inp * expand_ratio))
        self.block = nn.Sequential()
        if expand_ratio != 1:
            self.block.add_module('exp_1x1', conv_2d(inp, hidden_dim, kernel_size=3, stride=stride))
        if squeeze_excitation:
            self.block.add_module('conv_3x3',
                                  conv_2d(hidden_dim, hidden_dim, kernel_size=3, stride=stride, groups=hidden_dim))
        self.block.add_module('red_1x1', conv_2d(hidden_dim, oup, kernel_size=1, stride=1, act=act))
        self.use_res_connect = self.stride == 1 and inp == oup
 
    def forward(self, x):
        if self.use_res_connect:
            return x + self.block(x)
        else:
            return self.block(x)
 
 
class UniversalInvertedBottleneckBlock(nn.Module):
    def __init__(self,
                 inp,
                 oup,
                 start_dw_kernel_size,
                 middle_dw_kernel_size,
                 middle_dw_downsample,
                 stride,
                 expand_ratio
                 ):
        """An inverted bottleneck block with optional depthwises.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        """
        super().__init__()
        # Starting depthwise conv.
        self.start_dw_kernel_size = start_dw_kernel_size
        if self.start_dw_kernel_size:
            stride_ = stride if not middle_dw_downsample else 1
            self._start_dw_ = conv_2d(inp, inp, kernel_size=start_dw_kernel_size, stride=stride_, groups=inp, act=False)
        # Expansion with 1x1 convs.
        expand_filters = make_divisible(inp * expand_ratio, 8)
        self._expand_conv = conv_2d(inp, expand_filters, kernel_size=1)
        # Middle depthwise conv.
        self.middle_dw_kernel_size = middle_dw_kernel_size
        if self.middle_dw_kernel_size:
            stride_ = stride if middle_dw_downsample else 1
            self._middle_dw = conv_2d(expand_filters, expand_filters, kernel_size=middle_dw_kernel_size, stride=stride_,
                                      groups=expand_filters)
        # Projection with 1x1 convs.
        self._proj_conv = conv_2d(expand_filters, oup, kernel_size=1, stride=1, act=False)
 
        # Ending depthwise conv.
        # this not used
        # _end_dw_kernel_size = 0
        # self._end_dw = conv_2d(oup, oup, kernel_size=_end_dw_kernel_size, stride=stride, groups=inp, act=False)
 
    def forward(self, x):
        if self.start_dw_kernel_size:
            x = self._start_dw_(x)
            # print("_start_dw_", x.shape)
        x = self._expand_conv(x)
        # print("_expand_conv", x.shape)
        if self.middle_dw_kernel_size:
            x = self._middle_dw(x)
            # print("_middle_dw", x.shape)
        x = self._proj_conv(x)
        # print("_proj_conv", x.shape)
        return x
 
 
class MultiQueryAttentionLayerWithDownSampling(nn.Module):
    def __init__(self, inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides,
                 dw_kernel_size=3, dropout=0.0):
        """Multi Query Attention with spatial downsampling.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        3 parameters are introduced for the spatial downsampling:
        1. kv_strides: downsampling factor on Key and Values only.
        2. query_h_strides: vertical strides on Query only.
        3. query_w_strides: horizontal strides on Query only.
        This is an optimized version.
        1. Projections in Attention is explict written out as 1x1 Conv2D.
        2. Additional reshapes are introduced to bring a up to 3x speed up.
        """
        super().__init__()
        self.num_heads = num_heads
        self.key_dim = key_dim
        self.value_dim = value_dim
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.dw_kernel_size = dw_kernel_size
        self.dropout = dropout
 
        self.head_dim = key_dim // num_heads
 
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            self._query_downsampling_norm = nn.BatchNorm2d(inp)
        self._query_proj = conv_2d(inp, num_heads * key_dim, 1, 1, norm=False, act=False)
 
        if self.kv_strides > 1:
            self._key_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
            self._value_dw_conv = conv_2d(inp, inp, dw_kernel_size, kv_strides, groups=inp, norm=True, act=False)
        self._key_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
        self._value_proj = conv_2d(inp, key_dim, 1, 1, norm=False, act=False)
 
        self._output_proj = conv_2d(num_heads * key_dim, inp, 1, 1, norm=False, act=False)
        self.dropout = nn.Dropout(p=dropout)
 
    def forward(self, x):
        batch_size, seq_length, _, _ = x.size()
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            q = F.avg_pool2d(self.query_h_stride, self.query_w_stride)
            q = self._query_downsampling_norm(q)
            q = self._query_proj(q)
        else:
            q = self._query_proj(x)
        px = q.size(2)
        q = q.view(batch_size, self.num_heads, -1, self.key_dim)  # [batch_size, num_heads, seq_length, key_dim]
 
        if self.kv_strides > 1:
            k = self._key_dw_conv(x)
            k = self._key_proj(k)
            v = self._value_dw_conv(x)
            v = self._value_proj(v)
        else:
            k = self._key_proj(x)
            v = self._value_proj(x)
        k = k.view(batch_size, self.key_dim, -1)  # [batch_size, key_dim, seq_length]
        v = v.view(batch_size, -1, self.key_dim)  # [batch_size, seq_length, key_dim]
 
        # calculate attn score
        attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)
        attn_score = self.dropout(attn_score)
        attn_score = F.softmax(attn_score, dim=-1)
 
        context = torch.matmul(attn_score, v)
        context = context.view(batch_size, self.num_heads * self.key_dim, px, px)
        output = self._output_proj(context)
        return output
 
 
class MNV4LayerScale(nn.Module):
    def __init__(self, init_value):
        """LayerScale as introduced in CaiT: https://arxiv.org/abs/2103.17239
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py
        As used in MobileNetV4.
        Attributes:
            init_value (float): value to initialize the diagonal matrix of LayerScale.
        """
        super().__init__()
        self.init_value = init_value
 
    def forward(self, x):
        gamma = self.init_value * torch.ones(x.size(-1), dtype=x.dtype, device=x.device)
        return x * gamma
 
 
class MultiHeadSelfAttentionBlock(nn.Module):
    def __init__(
            self,
            inp,
            num_heads,
            key_dim,
            value_dim,
            query_h_strides,
            query_w_strides,
            kv_strides,
            use_layer_scale,
            use_multi_query,
            use_residual=True
    ):
        super().__init__()
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.use_layer_scale = use_layer_scale
        self.use_multi_query = use_multi_query
        self.use_residual = use_residual
 
        self._input_norm = nn.BatchNorm2d(inp)
        if self.use_multi_query:
            self.multi_query_attention = MultiQueryAttentionLayerWithDownSampling(
                inp, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides
            )
        else:
            self.multi_head_attention = nn.MultiheadAttention(inp, num_heads, kdim=key_dim)
 
        if self.use_layer_scale:
            self.layer_scale_init_value = 1e-5
            self.layer_scale = MNV4LayerScale(self.layer_scale_init_value)
 
    def forward(self, x):
        # Not using CPE, skipped
        # input norm
        shortcut = x
        x = self._input_norm(x)
        # multi query
        if self.use_multi_query:
            x = self.multi_query_attention(x)
        else:
            x = self.multi_head_attention(x, x)
        # layer scale
        if self.use_layer_scale:
            x = self.layer_scale(x)
        # use residual
        if self.use_residual:
            x = x + shortcut
        return x
 
 
def build_blocks(layer_spec):
    if not layer_spec.get('block_name'):
        return nn.Sequential()
    block_names = layer_spec['block_name']
    layers = nn.Sequential()
    if block_names == "convbn":
        schema_ = ['inp', 'oup', 'kernel_size', 'stride']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"convbn_{i}", conv_2d(**args))
    elif block_names == "uib":
        schema_ = ['inp', 'oup', 'start_dw_kernel_size', 'middle_dw_kernel_size', 'middle_dw_downsample', 'stride',
                   'expand_ratio', 'msha']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            msha = args.pop("msha") if "msha" in args else 0
            layers.add_module(f"uib_{i}", UniversalInvertedBottleneckBlock(**args))
            if msha:
                msha_schema_ = [
                    "inp", "num_heads", "key_dim", "value_dim", "query_h_strides", "query_w_strides", "kv_strides",
                    "use_layer_scale", "use_multi_query", "use_residual"
                ]
                args = dict(zip(msha_schema_, [args['oup']] + (msha)))
                layers.add_module(f"msha_{i}", MultiHeadSelfAttentionBlock(**args))
    elif block_names == "fused_ib":
        schema_ = ['inp', 'oup', 'stride', 'expand_ratio', 'act']
        for i in range(layer_spec['num_blocks']):
            args = dict(zip(schema_, layer_spec['block_specs'][i]))
            layers.add_module(f"fused_ib_{i}", InvertedResidual(**args))
    else:
        raise NotImplementedError
    return layers
 
 
class MobileNetV4(nn.Module):
    def __init__(self, model):
        # MobileNetV4ConvSmall  MobileNetV4ConvMedium  MobileNetV4ConvLarge
        # MobileNetV4HybridMedium  MobileNetV4HybridLarge
        """Params to initiate MobilenNetV4
        Args:
            model : support 5 types of models as indicated in
            "https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py"
        """
        super().__init__()
        assert model in MODEL_SPECS.keys()
        self.model = model
        self.spec = MODEL_SPECS[self.model]
 
        # conv0
        self.conv0 = build_blocks(self.spec['conv0'])
        # layer1
        self.layer1 = build_blocks(self.spec['layer1'])
        # layer2
        self.layer2 = build_blocks(self.spec['layer2'])
        # layer3
        self.layer3 = build_blocks(self.spec['layer3'])
        # layer4
        self.layer4 = build_blocks(self.spec['layer4'])
        # layer5
        self.layer5 = build_blocks(self.spec['layer5'])
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def forward(self, x):
        x0 = self.conv0(x)
        x1 = self.layer1(x0)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        # x5 = self.layer5(x4)
        # x5 = nn.functional.adaptive_avg_pool2d(x5, 1)
        return [x1, x2, x3, x4]
 
 
def MobileNetV4ConvSmall():
    model = MobileNetV4('MobileNetV4ConvSmall')
    return model
 
def MobileNetV4ConvMedium():
    model = MobileNetV4('MobileNetV4ConvMedium')
    return model
 
def MobileNetV4ConvLarge():
    model = MobileNetV4('MobileNetV4ConvLarge')
    return model
 
def MobileNetV4HybridMedium():
    model = MobileNetV4('MobileNetV4HybridMedium')
    return model
 
def MobileNetV4HybridLarge():
    model = MobileNetV4('MobileNetV4HybridLarge')
    return model
 
 
if __name__ == "__main__":
    # Generating Sample image
    image_size = (1, 3, 640, 640)
    image = torch.rand(*image_size)
 
    # Model
    model = MobileNetV4HybridLarge()
 
    out = model(image)
    for i in range(len(out)):
        print(out[i].shape)

3.YOLOv11中添加MobileNetV4方式 

3.1 在ultralytics/nn下新建Extramodule

 3.2 在Extramodule里创建MobileNetV4

在MobileNetV4.py文件里添加给出的MobileNetV4代码

添加完MobileNetV4代码后,在ultralytics/nn/Extramodule/__init__.py文件中引用

3.3 在tasks.py里引用

在ultralytics/nn/tasks.py文件里引用Extramodule

(1)在tasks.py找到parse_model(ctrl+f 可以直接搜索parse_model位置

(2)

        elif m in {MobileNetV4ConvLarge, MobileNetV4ConvSmall,MobileNetV4ConvMedium, MobileNetV4HybridMedium, MobileNetV4HybridLarge
                   }:
            m = m(*args)
            c2 = m.width_list
            backbone = True

(3)将elif m is AIFI:以下的代码全部替换成我给的

上述代码全部替换以下代码

        elif m is AIFI:
            args = [ch[f], *args]
        elif m in {HGStem, HGBlock}:
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in {Detect, WorldDetect, Segment, Pose, OBB, ImagePoolingAttn, v10Detect}:
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is CBLinear:
            c2 = args[0]
            c1 = ch[f]
            args = [c1, c2, *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list):
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
 
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
 
 
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
 
        save.extend(
            x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            if len(c2) != 5:
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

 

(4)这个修改不在def parse_model中,但是还在tasks.py中,在tasks.py前面几行

    # 主干修改处
    def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                if len(x) != 5:  # 0 - 5
                    x.insert(0, None)
                for index, i in enumerate(x):
                    if index in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]  # 最后一个输出传给下一层
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

(5)在ultralytics/models/yolo/detect/train.py里找到

 到此全部修改结束。 

4. 新建一个yolo11MobileNetV4.yaml文件  

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs

# YOLO11n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MobileNetV4ConvSmall, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5
  - [-1, 2, C2PSA, [1024]] # 6

# YOLO11n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 7
  - [[-1, 3], 1, Concat, [1]]  # 8 cat backbone P4
  - [-1, 3, C3k2, [512, False]]  # 9

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 10
  - [[-1, 2], 1, Concat, [1]]  # 11 cat backbone P3
  - [-1, 3, C3k2, [256, False]]  # 12 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 13
  - [[-1, 9], 1, Concat, [1]]  # 14 cat head P4
  - [-1, 3, C3k2, [512, False]]  # 15 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 16
  - [[-1, 6], 1, Concat, [1]]  # 17 cat head P5
  - [-1, 3, C3k2, [1024, False]]  # 18 (P5/32-large)

  - [[12, 15, 18], 1, Detect, [nc]]  # Detect(P3, P4, P5)

大家根据自己的数据集实际情况,修改nc大小。

5.模型训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO

if __name__ == '__main__':
    model = YOLO(r'D:\yolo\yolov11\ultralytics-main\datasets\yolo11MobileNetV4.yaml')
    model.train(data=r'D:\yolo\yolov11\ultralytics-main\datasets\data.yaml',
                cache=False,
                imgsz=640,
                epochs=100,
                single_cls=False,  # 是否是单类别检测
                batch=4,
                close_mosaic=10,
                workers=0,
                device='0',
                optimizer='SGD',
                amp=True,
                project='runs/train',
                name='exp',
                )

模型结构打印,成功运行 :

6.本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的,后期我会根据各种前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

YOLOv11有效涨点专栏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886287.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

小川科技携手阿里云数据库MongoDB:数据赋能企业构建年轻娱乐生态

随着信息技术的飞速发展&#xff0c;企业在处理海量数据时所面临的挑战日益严峻。特别是在年轻娱乐领域&#xff0c;用户行为的多样性和数据量的激增对数据存储与分析技术提出了更高的要求。在此背景下&#xff0c;小川凭借其前瞻性的技术视野&#xff0c;选择了MongoDB作为其数…

AlmaLinux 9 安装mysql8.0.38

文件下载 https://cdn.mysql.com//Downloads/MySQL-8.0/mysql-8.0.39-linux-glibc2.12-x86_64.tar 选择合适系统版本 下载后解压 tar -xvf mysql-8.0.39-linux-glibc2.12-x86_64.tar解压后里面有三个文件夹 使用mysql-8.0.39-linux-glibc2.12-x86_64.tar.xz即可&#xff0c…

Redis中String类型的常用命令(append,getrenge,setrange等命令)

Redis----String命令 前言.常见的String存储类型. 常见命令1. set 命令2. get 命令3. mget命令与mset命令4. setnx命令5. setex与psetex命令6. incr与incrby与incrbyfloat命令7. decr与decrby命令8. append命令9. getrange和setrange命令10. strlen命令. 前言. 常见的String存…

【Kubernetes】常见面试题汇总(四十五)

目录 102.使用 Kubernetes 时可以采取的最佳安全措施是什么&#xff1f; 103.什么是联合集群&#xff1f; 特别说明&#xff1a; 题目 1-68 属于【Kubernetes】的常规概念题&#xff0c;即 “ 汇总&#xff08;一&#xff09;~&#xff08;二十二&#xff09;” 。 题目…

高中教辅汇总【35GB】

文章目录 一、资源概览二、资源亮点三、获取方式 一、资源概览 这份教辅资源汇总&#xff0c;精心搜集了高中各学科的海量教辅资料&#xff0c;总容量高达35GB&#xff0c;覆盖了语文、数学、英语、物理、化学、生物、历史、地理、政治等所有必修及选修科目。从基础知识点到难…

插槽slot在vue中的使用

介绍 在 Vue.js 中&#xff0c;插槽&#xff08;slot&#xff09;是一种用于实现组件内容分发的功能。通过插槽&#xff0c;可以让父组件在使用子组件时自定义子组件内部的内容。插槽提供了一种灵活的方式来组合和复用组件。 项目中有很多地方需要调用一个组件&#xff0c;比…

【H2O2|全栈】关于CSS(9)CSS3扩充了哪些新鲜的东西?(二)

目录 CSS3入门 前言 准备工作 伪元素补充 :before :after 文本溢出属性 转换效果 预告和回顾 后话 CSS3入门 前言 本系列博客主要介绍CSS相关的知识点。 这一期主要介绍以下几个CSS3的知识点&#xff1a; 伪元素补充文本溢出属性转换 没有基础的朋友&#xff…

【Docker】配置文件

问题 学习Docker期间会涉及到docker的很多配置文件&#xff0c;可能会涉及到的会有&#xff1a; /usr/lib/systemd/system/docker.service 【docker用于被systemd管理的配置文件】 /etc/systemd/system/docker.service.d【覆盖配置文件的存放处】 /etc/systemd/system/mul…

网页前端开发之Javascript入门篇(4/9):循环控制

Javascript循环控制 什么是循环控制&#xff1f; 答&#xff1a;其概念跟 Python教程 介绍的一样&#xff0c;只是语法上有所变化。 参考流程图如下&#xff1a; 其对应语法&#xff1a; var i 0; // 设置起始值 var minutes 15; // 设置结束值&#xff08;15分钟…

VMware Aria Operations for Networks 6.13 发布,新增功能概览

VMware Aria Operations for Networks 6.13 - 网络和应用监控工具 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-aria-operations-for-networks/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org VMware Aria Oper…

Golang | Leetcode Golang题解之第440题字典序的第K小数字

题目&#xff1a; 题解&#xff1a; func getSteps(cur, n int) (steps int) {first, last : cur, curfor first < n {steps min(last, n) - first 1first * 10last last*10 9}return }func findKthNumber(n, k int) int {cur : 1k--for k > 0 {steps : getSteps(cu…

Llama 系列简介与 Llama3 预训练模型推理

1. Llama 系列简介 1.1 Llama1 由 Meta AI 发布&#xff0c;包含 7B、13B、33B 和 65B 四种参数规模的开源基座语言模型 数据集&#xff1a;模型训练数据集使用的都是开源的数据集&#xff0c;总共 1.4T token 模型结构&#xff1a;原始的 Transformer 由编码器&#xff08…

C++入门基础 (超详解)

文章目录 前言1. C关键字2. C的第一个程序3. 命名空间3.1 namespace的定义3.2 命名空间的嵌套3.3 命名空间使用3.4 查找优先级总结 4. C输入和输出4.1 标准输入输出 (iostream库)4.2 文件输入输出 (fstream库)4.3 字符串流 (sstream库)4.4 C格式化输出4.5 std::endl和\n的区别 …

56 门控循环单元(GRU)_by《李沐:动手学深度学习v2》pytorch版

系列文章目录 文章目录 系列文章目录门控循环单元&#xff08;GRU&#xff09;门控隐状态重置门和更新门候选隐状态隐状态 从零开始实现初始化模型参数定义模型训练与预测 简洁实现小结练习 门控循环单元&#xff08;GRU&#xff09; 之前我们讨论了如何在循环神经网络中计算梯…

生信初学者教程(二十三):REF+SVM筛选候选标记物

文章目录 介绍加载R包导入数据准备数据机器学习特征筛选数据分割基础模型Recursive Feature Elimination特征筛选调参最终分类模型测试集验证标记基因输出结果总结介绍 采用了REF(Recursive Feature Elimination) 结合 SVM(Support Vector Machine) 的方法,对差异基因(参…

探索未来:hbmqtt,Python中的AI驱动MQTT

文章目录 **探索未来&#xff1a;hbmqtt&#xff0c;Python中的AI驱动MQTT**1. 背景介绍2. hbmqtt是什么&#xff1f;3. 安装hbmqtt4. 简单的库函数使用方法4.1 连接到MQTT服务器4.2 发布消息4.3 订阅主题4.4 接收消息4.5 断开连接 5. 应用场景示例5.1 智能家居控制5.2 环境监测…

react-问卷星项目(4)

项目实战 使用CSS 尽量不要使用内联CSS 内联style代码多&#xff0c;性能差&#xff0c;扩展性差外链css文件可复用代码&#xff0c;可单独缓存文件 元素内联style 和HTMl元素的style相似必须用JS写法&#xff0c;不能是字符串&#xff0c;里面必须是对象 <span style…

实现epoll事件的两种模型(ET/LT)、epoll反应堆模型

前置知识&#xff1a; 多进程/线程并发服务器、多路I/O转接服务器的简单实现-CSDN博客 1. 事件模型 EPOLL事件有两种模型&#xff1a; Edge Triggered (ET) 边缘触发只有数据到来才触发&#xff0c;不管缓存区中是否还有数据。Level Triggered (LT) 水平触发只要有数据都会…

C++基类构造器的自动调用

C基类构造器的自动调用 虽然基类的构造器和解构器不会被派生类继承&#xff0c;但它们会被派生类的构造器和解构器自动调用&#xff0c;今天我们用代码实证一下。 验证代码 源代码&#xff0c;仔细看注释内容&#xff1a; D:\YcjWork\CppTour>vim c2004.cpp #include &l…

Ubuntu下安装Zookeeper集群

Zookeeper集群是一个开源的分布式协调服务系统&#xff0c;它由Apache软件基金会维护&#xff0c;旨在为分布式应用提供一致性和可靠性的服务。 在Zookeeper集群中&#xff0c;服务器可以扮演三种角色——领导者&#xff08;Leader&#xff09;、跟随者&#xff08;Follower&a…