56 门控循环单元(GRU)_by《李沐:动手学深度学习v2》pytorch版

系列文章目录


文章目录

  • 系列文章目录
  • 门控循环单元(GRU)
    • 门控隐状态
      • 重置门和更新门
      • 候选隐状态
      • 隐状态
    • 从零开始实现
      • 初始化模型参数
      • 定义模型
      • 训练与预测
    • 简洁实现
    • 小结
    • 练习


门控循环单元(GRU)

之前我们讨论了如何在循环神经网络中计算梯度,以及矩阵连续乘积可以导致梯度消失或梯度爆炸的问题。
下面我们简单思考一下这种梯度异常在实践中的意义:

  • 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。
    考虑一个极端情况,其中第一个观测值包含一个校验和,目标是在序列的末尾辨别校验和是否正确。
    在这种情况下,第一个词元的影响至关重要。
    我们希望有某些机制能够在一个记忆元里存储重要的早期信息。
    如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度,因为它会影响所有后续的观测值。
  • 我们可能会遇到这样的情况:一些词元没有相关的观测值。
    例如,在对网页内容进行情感分析时,可能有一些辅助HTML代码与网页传达的情绪无关。
    我们希望有一些机制来跳过隐状态表示中的此类词元。
  • 我们可能会遇到这样的情况:序列的各个部分之间存在逻辑中断。
    例如,书的章节之间可能会有过渡存在,或者证券的熊市和牛市之间可能会有过渡存在。
    在这种情况下,最好有一种方法来重置我们的内部状态表示。

在学术界已经提出了许多方法来解决这类问题。
其中最早的方法是"长短期记忆"(long-short-term memory,LSTM),我们将在之后讨论。
门控循环单元(gated recurrent unit,GRU)是一个稍微简化的变体,通常能够提供同等的效果,并且计算的速度明显更快。
由于门控循环单元更简单,我们从它开始解读。

门控隐状态

门控循环单元与普通的循环神经网络之间的关键区别在于:
前者支持隐状态的门控。
这意味着模型有专门的机制来确定应该何时更新隐状态,以及应该何时重置隐状态。
这些机制是可学习的,并且能够解决了上面列出的问题。
例如,如果第一个词元非常重要,模型将学会在第一次观测之后不更新隐状态。
同样,模型也可以学会跳过不相关的临时观测。
最后,模型还将学会在需要的时候重置隐状态。
下面我们将详细讨论各类门控。

重置门和更新门

我们首先介绍重置门(reset gate)和更新门(update gate)。
我们把它们设计成 ( 0 , 1 ) (0, 1) (0,1)区间中的向量,这样我们就可以进行凸组合。(“凸组合”是一个数学概念,主要用于优化和几何领域。它指的是在给定的点(或向量)集合中,通过线性组合得到的点,其中每个点的系数都是非负的,并且所有系数的和为1。)
重置门允许我们控制“可能还想记住”的过去状态的数量;
更新门将允许我们控制新状态中有多少个是旧状态的副本。

我们从构造这些门控开始。
下图描述了门控循环单元中的重置门和更新门的输入,输入是由当前时间步的输入和前一时间步的隐状态给出。
两个门的输出是由使用sigmoid激活函数的两个全连接层给出。
在这里插入图片描述

我们来看一下门控循环单元的数学表达。对于给定的时间步 t t t,假设输入是一个小批量 X t ∈ R n × d \mathbf{X}_t \in \mathbb{R}^{n \times d} XtRn×d(样本个数 n n n,输入个数 d d d),上一个时间步的隐状态是 H t − 1 ∈ R n × h \mathbf{H}_{t-1} \in \mathbb{R}^{n \times h} Ht1Rn×h(隐藏单元个数 h h h)。
那么,重置门 R t ∈ R n × h \mathbf{R}_t \in \mathbb{R}^{n \times h} RtRn×h和更新门 Z t ∈ R n × h \mathbf{Z}_t \in \mathbb{R}^{n \times h} ZtRn×h的计算如下所示:

R t = σ ( X t W x r + H t − 1 W h r + b r ) , Z t = σ ( X t W x z + H t − 1 W h z + b z ) , \begin{aligned} \mathbf{R}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xr} + \mathbf{H}_{t-1} \mathbf{W}_{hr} + \mathbf{b}_r),\\ \mathbf{Z}_t = \sigma(\mathbf{X}_t \mathbf{W}_{xz} + \mathbf{H}_{t-1} \mathbf{W}_{hz} + \mathbf{b}_z), \end{aligned} Rt=σ(XtWxr+Ht1Whr+br),Zt=σ(XtWxz+Ht1Whz+bz),

其中 W x r , W x z ∈ R d × h \mathbf{W}_{xr}, \mathbf{W}_{xz} \in \mathbb{R}^{d \times h} Wxr,WxzRd×h W h r , W h z ∈ R h × h \mathbf{W}_{hr}, \mathbf{W}_{hz} \in \mathbb{R}^{h \times h} Whr,WhzRh×h是权重参数, b r , b z ∈ R 1 × h \mathbf{b}_r, \mathbf{b}_z \in \mathbb{R}^{1 \times h} br,bzR1×h是偏置参数。
请注意,在求和过程中会触发广播机制,我们使用sigmoid函数(将输入值转换到区间 ( 0 , 1 ) (0, 1) (0,1)

候选隐状态

接下来,让我们将重置门 R t \mathbf{R}_t Rt
与 常规隐状态更新机制集成,得到在时间步 t t t候选隐状态(candidate hidden state) H ~ t ∈ R n × h \tilde{\mathbf{H}}_t \in \mathbb{R}^{n \times h} H~tRn×h

H ~ t = tanh ⁡ ( X t W x h + ( R t ⊙ H t − 1 ) W h h + b h ) , \tilde{\mathbf{H}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \left(\mathbf{R}_t \odot \mathbf{H}_{t-1}\right) \mathbf{W}_{hh} + \mathbf{b}_h), H~t=tanh(XtWxh+(RtHt1)Whh+bh),
:eqlabel:gru_tilde_H

其中 W x h ∈ R d × h \mathbf{W}_{xh} \in \mathbb{R}^{d \times h} WxhRd×h W h h ∈ R h × h \mathbf{W}_{hh} \in \mathbb{R}^{h \times h} WhhRh×h是权重参数, b h ∈ R 1 × h \mathbf{b}_h \in \mathbb{R}^{1 \times h} bhR1×h是偏置项,符号 ⊙ \odot 是Hadamard积(按元素乘积)运算符。
在这里,我们使用tanh非线性激活函数来确保候选隐状态中的值保持在区间 ( − 1 , 1 ) (-1, 1) (1,1)中。

与 一般的RNN相比, :eqref:gru_tilde_H中的 R t \mathbf{R}_t Rt H t − 1 \mathbf{H}_{t-1} Ht1的元素相乘可以减少以往状态的影响。
每当重置门 R t \mathbf{R}_t Rt中的项接近 1 1 1时,我们恢复一个如 :eqref:rnn_h_with_state中的普通的循环神经网络。
对于重置门 R t \mathbf{R}_t Rt中所有接近 0 0 0的项,候选隐状态是以 X t \mathbf{X}_t Xt作为输入的多层感知机的结果。
因此,任何预先存在的隐状态都会被重置为默认值。

:numref:fig_gru_2说明了应用重置门之后的计算流程。

在这里插入图片描述label:fig_gru_2

隐状态

上述的计算结果只是候选隐状态,我们仍然需要结合更新门 Z t \mathbf{Z}_t Zt的效果。
这一步确定新的隐状态 H t ∈ R n × h \mathbf{H}_t \in \mathbb{R}^{n \times h} HtRn×h在多大程度上来自旧的状态 H t − 1 \mathbf{H}_{t-1} Ht1和新的候选状态 H ~ t \tilde{\mathbf{H}}_t H~t。更新门 Z t \mathbf{Z}_t Zt仅需要在 H t − 1 \mathbf{H}_{t-1} Ht1 H ~ t \tilde{\mathbf{H}}_t H~t之间进行按元素的凸组合就可以实现这个目标。这就得出了门控循环单元的最终更新公式:

H t = Z t ⊙ H t − 1 + ( 1 − Z t ) ⊙ H ~ t . \mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t. Ht=ZtHt1+(1Zt)H~t.

每当更新门 Z t \mathbf{Z}_t Zt接近 1 1 1时,模型就倾向只保留旧状态。
此时,来自 X t \mathbf{X}_t Xt的信息基本上被忽略,从而有效地跳过了依赖链条中的时间步 t t t
相反,当 Z t \mathbf{Z}_t Zt接近 0 0 0时,新的隐状态 H t \mathbf{H}_t Ht就会接近候选隐状态 H ~ t \tilde{\mathbf{H}}_t H~t
这些设计可以帮助我们处理循环神经网络中的梯度消失问题,并更好地捕获时间步距离很长的序列的依赖关系。
例如,如果整个子序列的所有时间步的更新门都接近于 1 1 1,则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。

下图说明了更新门起作用后的计算流。

在这里插入图片描述label:fig_gru_3

总之,门控循环单元具有以下两个显著特征:

  • 重置门有助于捕获序列中的短期依赖关系;
  • 更新门有助于捕获序列中的长期依赖关系。

从零开始实现

为了更好地理解门控循环单元模型,我们从零开始实现它。
首先,我们读取时间机器数据集:

import torch
from torch import nn
from d2l import torch as d2l

batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)

初始化模型参数

下一步是初始化模型参数。
我们从标准差为 0.01 0.01 0.01的高斯分布中提取权重,
并将偏置项设为 0 0 0,超参数num_hiddens定义隐藏单元的数量,
实例化与更新门、重置门、候选隐状态和输出层相关的所有权重和偏置。

def get_params(vocab_size, num_hiddens, device):
    num_inputs = num_outputs = vocab_size

    def normal(shape):
        return torch.randn(size=shape, device=device)*0.01

    def three():
        return (normal((num_inputs, num_hiddens)),
                normal((num_hiddens, num_hiddens)),
                torch.zeros(num_hiddens, device=device))

    W_xz, W_hz, b_z = three()  # 更新门参数
    W_xr, W_hr, b_r = three()  # 重置门参数
    W_xh, W_hh, b_h = three()  # 候选隐状态参数
    # 输出层参数
    W_hq = normal((num_hiddens, num_outputs))
    b_q = torch.zeros(num_outputs, device=device)
    # 附加梯度
    params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
    for param in params:
        param.requires_grad_(True)
    return params

定义模型

现在我们将[定义隐状态的初始化函数]init_gru_state
与从零实现RNN中定义的init_rnn_state函数一样,此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为零。

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

现在我们准备[定义门控循环单元模型],
模型的架构与基本的循环神经网络单元是相同的,只是权重更新公式更为复杂。
下面代码中的 @ @ @与torch.mm作用相同。

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z)
        R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r)
        H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h) # 注意这之前的H都是上一时刻,这时的H才是这一时刻的H
        H = Z * H + (1 - Z) * H_tilda
        Y = H @ W_hq + b_q
        outputs.append(Y)
    return torch.cat(outputs, dim=0), (H,)

训练与预测

训练和预测的工作方式与从零实现RNN完全相同。
训练结束后,我们分别打印输出训练集的困惑度,以及前缀“time traveler”和“traveler”的预测序列上的困惑度。

vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
                            init_gru_state, gru)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.1, 38401.1 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
travelleryou can show black is white by argument said filby

<Figure size 350x250 with 1 Axes>

在这里插入图片描述

简洁实现

高级API包含了前文介绍的所有配置细节,所以我们可以直接实例化门控循环单元模型。
这段代码的运行速度要快得多,因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。

num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens)
model = d2l.RNNModel(gru_layer, len(vocab))
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.0, 389565.2 tokens/sec on cuda:0
time travelleryou can show black is white by argument said filby
traveller with a slight accession ofcheerfulness really thi

<Figure size 350x250 with 1 Axes>

在这里插入图片描述

小结

  • 门控循环神经网络可以更好地捕获时间步距离很长的序列上的依赖关系。
  • 重置门有助于捕获序列中的短期依赖关系。
  • 更新门有助于捕获序列中的长期依赖关系。
  • 重置门打开时,门控循环单元包含基本循环神经网络;更新门打开时,门控循环单元可以跳过子序列。

练习

  1. 假设我们只想使用时间步 t ′ t' t的输入来预测时间步 t > t ′ t > t' t>t的输出。对于每个时间步,重置门和更新门的最佳值是什么?
  2. 调整和分析超参数对运行时间、困惑度和输出顺序的影响。
  3. 比较rnn.RNNrnn.GRU的不同实现对运行时间、困惑度和输出字符串的影响。
  4. 如果仅仅实现门控循环单元的一部分,例如,只有一个重置门或一个更新门会怎样?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886262.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

生信初学者教程(二十三):REF+SVM筛选候选标记物

文章目录 介绍加载R包导入数据准备数据机器学习特征筛选数据分割基础模型Recursive Feature Elimination特征筛选调参最终分类模型测试集验证标记基因输出结果总结介绍 采用了REF(Recursive Feature Elimination) 结合 SVM(Support Vector Machine) 的方法,对差异基因(参…

探索未来:hbmqtt,Python中的AI驱动MQTT

文章目录 **探索未来&#xff1a;hbmqtt&#xff0c;Python中的AI驱动MQTT**1. 背景介绍2. hbmqtt是什么&#xff1f;3. 安装hbmqtt4. 简单的库函数使用方法4.1 连接到MQTT服务器4.2 发布消息4.3 订阅主题4.4 接收消息4.5 断开连接 5. 应用场景示例5.1 智能家居控制5.2 环境监测…

react-问卷星项目(4)

项目实战 使用CSS 尽量不要使用内联CSS 内联style代码多&#xff0c;性能差&#xff0c;扩展性差外链css文件可复用代码&#xff0c;可单独缓存文件 元素内联style 和HTMl元素的style相似必须用JS写法&#xff0c;不能是字符串&#xff0c;里面必须是对象 <span style…

实现epoll事件的两种模型(ET/LT)、epoll反应堆模型

前置知识&#xff1a; 多进程/线程并发服务器、多路I/O转接服务器的简单实现-CSDN博客 1. 事件模型 EPOLL事件有两种模型&#xff1a; Edge Triggered (ET) 边缘触发只有数据到来才触发&#xff0c;不管缓存区中是否还有数据。Level Triggered (LT) 水平触发只要有数据都会…

C++基类构造器的自动调用

C基类构造器的自动调用 虽然基类的构造器和解构器不会被派生类继承&#xff0c;但它们会被派生类的构造器和解构器自动调用&#xff0c;今天我们用代码实证一下。 验证代码 源代码&#xff0c;仔细看注释内容&#xff1a; D:\YcjWork\CppTour>vim c2004.cpp #include &l…

Ubuntu下安装Zookeeper集群

Zookeeper集群是一个开源的分布式协调服务系统&#xff0c;它由Apache软件基金会维护&#xff0c;旨在为分布式应用提供一致性和可靠性的服务。 在Zookeeper集群中&#xff0c;服务器可以扮演三种角色——领导者&#xff08;Leader&#xff09;、跟随者&#xff08;Follower&a…

如何使用ssm实现基于HTML的中国传统面食介绍网站的搭建+vue

TOC ssm758基于HTML的中国传统面食介绍网站的搭建vue 第1章 绪论 1.1选题动因 当前的网络技术&#xff0c;软件技术等都具备成熟的理论基础&#xff0c;市场上也出现各种技术开发的软件&#xff0c;这些软件都被用于各个领域&#xff0c;包括生活和工作的领域。随着电脑和笔…

Python和C++混淆矩阵地理学医学物理学视觉语言模型和算法模型评估工具

&#x1f3af;要点 优化损失函数评估指标海岸线检测算法评估遥感视觉表征和文本增强乳腺癌预测模型算法液体中闪烁光和切伦科夫光分离多标签分类任务性能评估有向无环图、多路径标记和非强制叶节点预测二元分类评估特征归因可信性评估马修斯相关系数对比其他准确度 Python桑…

数据集-目标检测系列- 螃蟹 检测数据集 crab >> DataBall

数据集-目标检测系列- 螃蟹 检测数据集 crab >> DataBall 数据集-目标检测系列- 螃蟹 检测数据集 crab >> DataBall 数据量&#xff1a;3k 想要进一步了解&#xff0c;请联系。 DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&a…

Python Tips6 基于数据库和钉钉机器人的通知

说明 起因是我第一版quant程序的短信通知失效了。最初认为短信是比较即时且比较醒目的通知方式&#xff0c;现在看来完全不行。 列举三个主要问题&#xff1a; 1 延时。在早先还能收到消息的时候&#xff0c;迟滞就很严重&#xff0c;几分钟都算短的。2 完全丢失。我手机没有…

Mac 电脑配置yolov8运行环境实现目标追踪、计数、画出轨迹、多线程

&#x1f947; 版权: 本文由【墨理学AI】原创首发、各位读者大大、敬请查阅、感谢三连 &#x1f389; 声明: 作为全网 AI 领域 干货最多的博主之一&#xff0c;❤️ 不负光阴不负卿 ❤️ 文章目录 &#x1f4d9; Mac 电脑 配置 yolov8 环境&#x1f4d9; 代码运行推理测试模型训…

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27 目录 文章目录 计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-27目录1. VisScience: An Extensive Benchmark for Evaluating K12 Educational Multi-modal Scientific Reasoning VisScience:…

kubeadm部署k8s集群,版本1.23.6;并设置calico网络BGP模式通信,版本v3.25--未完待续

1.集群环境创建 三台虚拟机&#xff0c;一台master节点&#xff0c;两台node节点 (根据官网我们知道k8s 1.24版本之后就需要额外地安装cri-dockerd作为桥接才能使用Docker Egine。经过尝试1.24后的版本麻烦事很多&#xff0c;所以此处我们选择1.23.6版本) 虚拟机环境创建参考…

Webstorm 中对 Node.js 后端项目进行断点调试

首先&#xff0c;肯定需要有一个启动服务器的命令脚本。 然后&#xff0c;写一个 debug 的配置&#xff1a; 然后&#xff0c;debug 模式 启动项目和 启动调试服务&#xff1a; 最后&#xff0c;发送请求&#xff0c;即可调试&#xff1a; 这几个关键按钮含义&#xff1a; 重启…

Geoserver关于忘记密码的解决方法

第一次安装后&#xff0c;如果你设置密码那一栏一直都是默认的话&#xff0c;那么登录密码应该是账户 admin&#xff0c;密码 geoserver 但是&#xff0c;如果你自己设置了密码和账户&#xff0c;登录又登录不上&#xff0c;或者忘记了&#xff0c;有以下方法可以解决。 本质…

CSS——文字闪烁效果

CSS——文字闪烁效果 今天来完成一个文字闪烁的动态效果&#xff0c;具体呈现效果如下&#xff1a; 文字闪烁动态效果 实现步骤 基础的样式 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"vi…

收单外包机构备案分析及建议

2020年9月16日&#xff0c;中国支付清算协会&#xff08;下称“中支协”或“协会”&#xff09;公示了首批收单外包服务机构备案名单。历经5年&#xff0c;约进行50次公示后&#xff0c;截至9月21日共备案收单外包机构32457家&#xff0c;取消备案机构316家&#xff0c;拟取消机…

8642 快速排序

### 思路 快速排序是一种分治算法&#xff0c;通过选择一个基准元素将数组分成两部分&#xff0c;然后递归地对每部分进行排序。每次分区后输出当前排序结果。 ### 伪代码 1. 读取输入的待排序关键字个数n。 2. 读取n个待排序关键字并存储在数组中。 3. 对数组进行快速排序&am…

【路径规划】基于球向量的粒子群优化(SPSO)算法在无人机路径规划中的实现

摘要 本文介绍了基于球形矢量的粒子群优化&#xff08;Spherical Particle Swarm Optimization, SPSO&#xff09;算法&#xff0c;用于无人机&#xff08;UAV&#xff09;路径规划。SPSO算法通过引入球形矢量的概念&#xff0c;增强了粒子群在多维空间中的探索和利用能力&…

安全中心 (SOC) 与 网络运营中心 (NOC)

NOC 和 SOC 之间的区别 网络运营中心 (NOC) 负责维护公司计算机系统的技术基础设施&#xff0c;而安全运营中心 (SOC) 则负责保护组织免受网络威胁。 NOC 专注于防止自然灾害、停电和互联网中断等自然原因造成的网络干扰&#xff0c;而 SOC 则从事监控、管理和保护。 NOC 提…