Arduino UNO R3自学笔记15 之 Arduino如何驱动数码管?

注意:学习和写作过程中,部分资料搜集于互联网,如有侵权请联系删除。

前言:学习使用数码管。

1.数码管介绍

        数码管的一种是半导体发光器件,数码管可分为七段数码管和八段数码管,区别在于八段数码管比七段数码管多一个用于显示小数点的发光二极管单元DP(decimal point),其基本单元是发光二极管。

也就是说数码管是有多个二极管封装成的一种器件,有共阴极数码管和共阳级数码管两种,其原理图如下:

2.数码管驱动原理

        数码管有共阴极数码管和共阳级数码管两种,其中区别在于:

        共阴极数码管:封装的二极管的阴极接在一起,接在GND,只要在在对应的二极管的阳极接上高电平即可导通,数码管相应位置亮起。

        共阳级数码管:封装的二极管的阳极接在一起,接到VCC,只要在在对应的二极管的阴极接上低电平即可导通,数码管相应位置亮起。

3.实验内容及实物连接图

        实验内容:采用共阳数码管显示数字0到9。

        实物连接图:

4.驱动代码

int num=0;
void seg(int num_show);
void setup() {
  // put your setup code here, to run once:
  for(int i=4;i<12;i++)pinMode(i,OUTPUT);
  Serial.begin(9600);
}

void loop() 
{
seg(num);
num=num+1;
delay(1000);
Serial.println(num);
if(num==6)
{
  num=0;
  digitalWrite(6, HIGH);delay(800);
  digitalWrite(6, LOW);delay(100);
  digitalWrite(6, HIGH);delay(800);
  digitalWrite(6, LOW);delay(100);
  digitalWrite(6, HIGH);delay(800);
}
}
void seg(int num_show)
{
 switch(num_show)
 {
  case 0 : num_show_0();  break;
  case 1 : num_show_1();  break;
  case 2 : num_show_2();  break;
  case 3 : num_show_3();  break;
  case 4 : num_show_4();  break;
  case 5 : num_show_5();  break;

 }
}
void num_show_0()
{
 digitalWrite(4, LOW);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, LOW);
 digitalWrite(9, LOW);
 digitalWrite(10, HIGH);
 digitalWrite(11, LOW);
}
void num_show_1()
{ 
 digitalWrite(4, HIGH);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, HIGH);
 digitalWrite(9, HIGH);
 digitalWrite(10, HIGH);
 digitalWrite(11, HIGH);
}
void num_show_2()
{
 digitalWrite(4, LOW);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, HIGH);
 digitalWrite(8, LOW);
 digitalWrite(9, LOW);
 digitalWrite(10, LOW);
 digitalWrite(11, HIGH);
}
void num_show_3()
{
 digitalWrite(4, LOW);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(10, LOW);
 digitalWrite(11, HIGH);
}
void num_show_4()
{
 digitalWrite(4, HIGH);
 digitalWrite(5, LOW);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, HIGH);
 digitalWrite(9, HIGH);
 digitalWrite(10, LOW);
 digitalWrite(11, LOW);
}
void num_show_5()
{
 digitalWrite(4, LOW);
 digitalWrite(5, HIGH);
 digitalWrite(6, LOW);
 digitalWrite(7, LOW);
 digitalWrite(8, LOW);
 digitalWrite(9, HIGH);
 digitalWrite(10, LOW);
 digitalWrite(11, LOW);
}

5.仿真视频

数码管测试视频

上一篇:Arduino UNO R3自学笔记14 之 Arduino使用HC-SR04模块如何测量距离?

下一篇:Arduino UNO R3自学笔记16 之 Arduino的定时器介绍及应用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/886155.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

L0-Linux-关卡材料提交

SSH全称Secure Shell&#xff0c;中文翻译为安全外壳&#xff0c;它是一种网络安全协议&#xff0c;通过加密和认证机制实现安全的访问和文件传输等业务。SSH 协议通过对网络数据进行加密和验证&#xff0c;在不安全的网络环境中提供了安全的网络服务。 SSH 是&#xff08;C/S…

QSqlDatabase在多线程中的使用

Qt中多线程使用数据库_qt数据库管理类支持多数据库,多线程-CSDN博客 1. 代码&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPushButton> #include <QSqlDatabase> #include <QSqlQuery> #include <QSqlError>…

【深度学习】05-Rnn循环神经网络-01- 自然语言处理概述/词嵌入层/循环网络/文本生成案例精讲

循环神经网络&#xff08;RNN&#xff09;主要用于自然语言处理的。 循环神经网络&#xff08;RNN&#xff09;、卷积神经网络&#xff08;CNN&#xff09;和全连接神经网络&#xff08;FCN&#xff09;是三种常见的神经网络类型&#xff0c;各自擅长处理不同类型的数据。下面…

RabbitMQ应用

RabbitMQ 共提供了7种⼯作模式, 进⾏消息传递 一、七种模式的概述 1、Simple(简单模式) P:生产者,就是发送消息的程序 C:消费者,就是接收消息的程序 Queue:消息队列,类似⼀个邮箱, 可以缓存消息; ⽣产者向其中投递消息, 消费者从其中取出消息 特点: ⼀个⽣产者P,⼀…

负载均衡--相关面试题(六)

在负载均衡的面试中&#xff0c;可能会遇到一系列涉及概念、原理、实践应用以及技术细节的问题。以下是一些常见的负载均衡面试题及其详细解答&#xff1a; 一、什么是负载均衡&#xff1f; 回答&#xff1a;负载均衡是一种将网络请求或数据传输工作分配给多个服务器或网络资源…

SpringSession微服务

一.在linux中确保启动起来redis和nacos 依赖记得别放<dependencyManagement></dependencyManagement>这个标签去了 1.首先查看已经启动的服务 docker ps 查看有没有安装redis和nacos 2.启动redis和nacos 发现没有启动redis和nacos,我们先来启动它。&#xff0c;…

计算机视觉学习路线:从基础到进阶

计算机视觉学习路线&#xff1a;从基础到进阶 计算机视觉&#xff08;Computer Vision&#xff09;是人工智能和机器学习领域中重要的分支&#xff0c;致力于让计算机能够理解和分析图像、视频等视觉信息。随着深度学习的发展&#xff0c;计算机视觉的应用变得越来越广泛&…

音视频入门基础:FLV专题(7)——Tag header简介

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;3&#xff09;——FLV header简介》中可以知道&#xff0c; 在FLV header之后&#xff0c;FLV文件剩下的部分应由PreviousTagSize和Tag组成。FLV文件 FLV header PreviousTagSize0 Tag1 PreviousTagSize1 Ta…

【C++】“list”的介绍和常用接口的模拟实现

【C】“list”的介绍和常用接口的模拟实现 一. list的介绍1. list常见的重要接口2. list的迭代器失效 二. list常用接口的模拟实现&#xff08;含注释&#xff09;三. list与vector的对比 一. list的介绍 list是可以在常数范围内在任意位置进行插入和删除的序列式容器&#xf…

2025 年 IT 前景:机遇与挑战并存,人工智能和云计算成重点

云计算de小白 投资人工智能&#xff1a;平衡潜力与实用性 到 2025 年&#xff0c;人工智能将成为 IT 支出的重要驱动力&#xff0c;尤其是在生成式人工智能领域。人工智能的前景在于它有可能彻底改变业务流程、增强决策能力并开辟新的收入来源。然而&#xff0c;现实情况更加微…

SpringCloud源码:服务端分析(二)- EurekaServer分析

背景 从昨日的两篇文章&#xff1a;SpringCloud源码&#xff1a;客户端分析&#xff08;一&#xff09;- SpringBootApplication注解类加载流程、SpringCloud源码&#xff1a;客户端分析&#xff08;二&#xff09;- 客户端源码分析。 我们理解了客户端的初始化&#xff0c;其实…

Python画笔案例-071 绘制闪闪的红星

1、绘制通闪闪的红星 通过 python 的turtle 库绘制 闪闪的红星,如下图: 2、实现代码 绘制闪闪的红星,以下为实现代码: """闪闪的红星.py """ import time import turtledef xsleep(n):"""防

通信工程学习:什么是MAC媒体接入控制

MAC&#xff1a;媒体接入控制 MAC&#xff08;Medium Access Control&#xff09;&#xff0c;即媒体接入控制&#xff0c;是计算机网络中数据链路层的一个重要组成部分&#xff0c;负责协调多个发送和接收站点对一个共享传输媒体的占用。以下是关于MAC的详细解释&#xff1a; …

系统架构设计师-知识产权与标准化

目录 一、保护范围与对象 二、保护期限 三、知识产权人确定 四、侵权判断 五、标准化 一、保护范围与对象 知识产权是权利人依法就下列课题享有的专有权利&#xff1a; &#xff08;一&#xff09;作品&#xff08;著作&#xff09; &#xff08;二&#xff09;发明、实用…

泰勒图 ——基于相关性与标准差的多模型评价指标可视化比较-XGBoost、sklearn

1、基于相关性与标准差的多模型评价指标可视化比较 # 数据读取并分割 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split plt.rcParams[font.family] = Times New Roman plt.rcParams[axes.unic…

针对考研的C语言学习(2019链表大题)

题目解析&#xff1a; 【考】双指针算法&#xff0c;逆置法&#xff0c;归并法。 解析&#xff1a;因为题目要求空间复杂度为O(1)&#xff0c;即不能再开辟一条链表&#xff0c;因此我们只能用变量来整体挪动原链表。 第一步先找出中间节点 typedef NODE* Node; Node find_m…

Linux-基础篇-磁盘分区,挂载

Linux 分区 原理介绍 Linux 来说无论有几个分区&#xff0c;分给哪一目录使用&#xff0c;它归根结底就只有一个根目录&#xff0c;一个独立且唯一的文件结构 , Linux 中每个分区都是用来组成整个文件系统的一部分。 Linux 采用了一种叫 “ 载入 ” 的处理方法&#xff0c;…

为什么有必要由母语人士翻译应用程序界面

在当今技术已成为我们生活不可或缺的一部分的世界中&#xff0c;移动应用接口在我们与数字空间的互动中发挥着关键作用。然而&#xff0c;无论应用程序本身多么完美&#xff0c;它的有效性可能会因糟糕地翻译而大大降低。这就是为什么&#xff0c;为了翻译应用程序界面&#xf…

在线css像素px到Em的转换器

具体请前往&#xff1a;在线Px转Em工具--将绝对像素(px)长度单位转换为相对长度em

Android SystemUI组件(09)唤醒亮屏 锁屏处理流程

该系列文章总纲链接&#xff1a;专题分纲目录 Android SystemUI组件 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节持续迭代之前章节的思维导图&#xff0c;主要关注左侧上方锁屏分析部分 唤醒亮屏 即可。 Power按键的处理逻辑最终是由PhoneWindowManager来…