Python 课程20-Scikit-learn

前言

Scikit-learn 是 Python 中最流行的机器学习库之一,它提供了多种用于监督学习和无监督学习的算法。Scikit-learn 的特点是简单易用、模块化且具有高效的性能。无论是初学者还是专业开发者,都可以借助它进行快速原型设计和模型开发。

在本教程中,我们将深入讲解 Scikit-learn 的基础操作、数据预处理、模型构建与调优、以及常用的机器学习算法,包括线性回归、决策树、支持向量机、聚类等。通过这份详细教程,你将掌握如何使用 Scikit-learn 构建高效的机器学习模型。


目录

前言

目录

1. Scikit-learn 基础

安装 Scikit-learn

Scikit-learn API 概述

数据集导入与基本操作

2. 数据预处理

数据标准化与归一化

处理缺失数据

类别特征编码

数据拆分与交叉验证

3. 监督学习

线性回归

逻辑回归

支持向量机(SVM)

决策树与随机森林

4. 无监督学习

K-means 聚类

主成分分析(PCA)

DBSCAN 聚类

5. 模型评估与调优

模型评估指标

交叉验证

网格搜索与随机搜索

6. 高级功能

管道(Pipeline)机制

自定义评分函数与模型

示例:使用 Scikit-learn 进行鸢尾花分类

步骤 1:加载数据集

步骤 2:数据预处理

步骤 4:评估模型

步骤 5:交叉验证与网格搜索调优

步骤 6:使用最佳模型进行预测

结论


1. Scikit-learn 基础

安装 Scikit-learn

使用 pip 安装 Scikit-learn:

pip install scikit-learn

Scikit-learn 依赖于 NumPySciPymatplotlib,确保这些库已经安装。

Scikit-learn API 概述

Scikit-learn 的核心是统一的 API 设计,包括三个主要步骤:

  1. 模型初始化:实例化模型。
  2. 模型拟合:使用 .fit() 方法训练模型。
  3. 预测与评估:通过 .predict() 进行预测,使用评估函数进行性能评估。
from sklearn.linear_model import LinearRegression

# 初始化模型
model = LinearRegression()

# 拟合模型
model.fit(X_train, y_train)

# 进行预测
predictions = model.predict(X_test)
数据集导入与基本操作

Scikit-learn 提供了一些内置的数据集,如 IrisBoston HousingDigits,你可以轻松导入并使用这些数据集。

  • 加载内置数据集
from sklearn import datasets

# 加载 Iris 数据集
iris = datasets.load_iris()
X, y = iris.data, iris.target

还可以通过 Pandas 读取 CSV 文件等外部数据集:

import pandas as pd

# 从 CSV 文件读取数据
df = pd.read_csv('data.csv')
X = df.drop(columns=['target'])
y = df['target']

2. 数据预处理

在机器学习中,数据预处理是至关重要的步骤。Scikit-learn 提供了多种工具来处理缺失值、标准化数据和编码类别特征。

数据标准化与归一化

机器学习模型通常要求输入数据进行标准化或归一化,以确保所有特征具有相同的尺度。

  • 标准化:通过移除平均值并缩放到单位方差。
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
  •  归一化:将特征值缩放到 [0, 1] 范围。
from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()
X_normalized = scaler.fit_transform(X)
处理缺失数据

你可以使用 SimpleImputer 处理数据中的缺失值。

from sklearn.impute import SimpleImputer

# 用均值填充缺失值
imputer = SimpleImputer(strategy='mean')
X_imputed = imputer.fit_transform(X)
类别特征编码

对于类别型特征,OneHotEncoderLabelEncoder 是常用的工具。

  • OneHotEncoder:将类别特征编码为多个二进制列。
from sklearn.preprocessing import OneHotEncoder

encoder = OneHotEncoder(sparse=False)
X_encoded = encoder.fit_transform(X)
数据拆分与交叉验证

在训练模型前,你需要将数据集拆分为训练集和测试集,以便评估模型的泛化能力。

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

3. 监督学习

线性回归

线性回归 是最基础的回归算法之一,用于预测连续值。

from sklearn.linear_model import LinearRegression

# 创建线性回归模型
model = LinearRegression()

# 拟合模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)
逻辑回归

逻辑回归 用于二分类或多分类任务。

from sklearn.linear_model import LogisticRegression

# 创建逻辑回归模型
model = LogisticRegression()

# 拟合模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)
支持向量机(SVM)

支持向量机可以用于分类、回归和异常检测任务。

from sklearn.svm import SVC

# 创建支持向量机模型
model = SVC(kernel='linear')

# 拟合模型
model.fit(X_train, y_train)

# 预测
y_pred = model.predict(X_test)
决策树与随机森林

决策树 是一种简单但强大的模型,随机森林 是基于多个决策树的集成模型。

  • 决策树
from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()
model.fit(X_train, y_train)
  •  随机森林
from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier()
model.fit(X_train, y_train)

4. 无监督学习

K-means 聚类

K-means 是一种常见的聚类算法,用于将数据划分为 K 个簇。

from sklearn.cluster import KMeans

model = KMeans(n_clusters=3)
model.fit(X)
labels = model.predict(X)
主成分分析(PCA)

主成分分析 是一种降维技术,用于减少数据的特征维度,同时保留数据的主要信息。

from sklearn.decomposition import PCA

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X)
DBSCAN 聚类

DBSCAN 是一种基于密度的聚类算法,能够处理噪声和形状不规则的簇。

from sklearn.cluster import DBSCAN

model = DBSCAN(eps=0.5, min_samples=5)
labels = model.fit_predict(X)

5. 模型评估与调优

模型评估指标
  • 分类任务常用指标:准确率、精确率、召回率、F1 分数。
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 准确率
accuracy = accuracy_score(y_test, y_pred)

# 精确率、召回率、F1 分数
precision = precision_score(y_test, y_pred, average='macro')
recall = recall_score(y_test, y_pred, average='macro')
f1 = f1_score(y_test, y_pred, average='macro')
  •  回归任务常用指标:均方误差、平均绝对误差、R² 分数。
from sklearn.metrics import mean_squared_error, r2_score

# 均方误差和 R² 分数
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
交叉验证

交叉验证可以帮助你评估模型在不同数据划分下的性能。

from sklearn.model_selection import cross_val_score

scores = cross_val_score(model, X, y, cv=5)
print("Cross-validation scores:", scores)

网格搜索与随机搜索

通过 GridSearchCVRandomizedSearchCV 可以自动化地进行超参数调优。

  • 网格搜索
from sklearn.model_selection import GridSearchCV

param_grid = {'C': [0.1, 1, 10], 'kernel': ['linear', 'rbf']}
model = SVC()
grid_search = GridSearchCV(model, param_grid, cv=5)
grid_search.fit(X_train, y_train)

print("最佳参数:", grid_search.best_params_)
print("最佳得分:", grid_search.best_score_)

在上述示例中,GridSearchCV 会尝试不同的参数组合,通过交叉验证选择性能最好的模型。

  • 随机搜索
from sklearn.model_selection import RandomizedSearchCV
from scipy.stats import uniform

param_dist = {'C': uniform(0.1, 10), 'kernel': ['linear', 'rbf']}
model = SVC()
random_search = RandomizedSearchCV(model, param_distributions=param_dist, n_iter=10, cv=5, random_state=42)
random_search.fit(X_train, y_train)

print("最佳参数:", random_search.best_params_)
print("最佳得分:", random_search.best_score_)

RandomizedSearchCV 在参数空间较大时效率更高,因为它只随机采样参数组合。


6. 高级功能

管道(Pipeline)机制

Pipeline 机制允许将数据预处理和模型训练步骤串联起来,简化工作流程并避免数据泄漏。

  • 创建管道
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC

pipeline = Pipeline([
    ('scaler', StandardScaler()),
    ('svc', SVC())
])

pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
  •  在管道中进行参数调优
from sklearn.model_selection import GridSearchCV

param_grid = {
    'svc__C': [0.1, 1, 10],
    'svc__kernel': ['linear', 'rbf']
}

grid_search = GridSearchCV(pipeline, param_grid, cv=5)
grid_search.fit(X_train, y_train)

print("最佳参数:", grid_search.best_params_)

在参数网格中,使用 步骤名称__参数名 的形式指定参数。

自定义评分函数与模型
  • 自定义评分函数

你可以定义自己的评分函数,用于模型评估和选择。

from sklearn.metrics import make_scorer, fbeta_score

# 定义自定义评分函数
fbeta_scorer = make_scorer(fbeta_score, beta=0.5)

# 在 GridSearchCV 中使用自定义评分函数
grid_search = GridSearchCV(model, param_grid, scoring=fbeta_scorer, cv=5)
  • 自定义模型

如果 Scikit-learn 没有满足你需求的模型,你可以创建自定义模型,只要遵循 fitpredict 方法的接口。

from sklearn.base import BaseEstimator, ClassifierMixin

class MyCustomModel(BaseEstimator, ClassifierMixin):
    def __init__(self, param=1):
        self.param = param

    def fit(self, X, y):
        # 自定义训练逻辑
        return self

    def predict(self, X):
        # 自定义预测逻辑
        return predictions

示例:使用 Scikit-learn 进行鸢尾花分类

我们将使用 Scikit-learn 的 Iris 数据集 进行分类任务。鸢尾花数据集包含 150 个样本,有 4 个特征和 3 个类别,目标是根据花瓣和萼片的大小来预测花的类别。

步骤 1:加载数据集
from sklearn import datasets
from sklearn.model_selection import train_test_split

# 加载 Iris 数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
步骤 2:数据预处理

我们将对特征进行标准化处理,使每个特征的均值为 0,方差为 1。

from sklearn.preprocessing import StandardScaler

# 标准化处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

 步骤 3:训练分类模型(逻辑回归)

from sklearn.linear_model import LogisticRegression

# 创建逻辑回归模型
model = LogisticRegression()

# 训练模型
model.fit(X_train, y_train)
步骤 4:评估模型

我们使用准确率(Accuracy)评估模型在测试集上的性能。

from sklearn.metrics import accuracy_score

# 预测测试集
y_pred = model.predict(X_test)

# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"测试集上的准确率: {accuracy:.2f}")
步骤 5:交叉验证与网格搜索调优

使用交叉验证评估模型,并使用 GridSearchCV 进行超参数调优。

from sklearn.model_selection import GridSearchCV

# 定义参数网格
param_grid = {
    'C': [0.1, 1, 10],
    'solver': ['lbfgs', 'liblinear']
}

# 使用 GridSearchCV 进行超参数调优
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train, y_train)

# 输出最佳参数和最佳分数
print(f"最佳参数: {grid_search.best_params_}")
print(f"最佳交叉验证得分: {grid_search.best_score_:.2f}")
步骤 6:使用最佳模型进行预测

使用调优后的最佳模型对测试集进行预测,并计算新的准确率。

# 使用最佳模型进行预测
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)

# 计算准确率
accuracy_best = accuracy_score(y_test, y_pred_best)
print(f"使用最佳模型的测试集准确率: {accuracy_best:.2f}")

 完整代码总结

from sklearn import datasets
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score

# 加载数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target

# 划分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# 数据预处理
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)

# 创建并训练模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 评估模型
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"测试集上的准确率: {accuracy:.2f}")

# 交叉验证与调优
param_grid = {'C': [0.1, 1, 10], 'solver': ['lbfgs', 'liblinear']}
grid_search = GridSearchCV(LogisticRegression(), param_grid, cv=5)
grid_search.fit(X_train, y_train)

print(f"最佳参数: {grid_search.best_params_}")
print(f"最佳交叉验证得分: {grid_search.best_score_:.2f}")

# 使用最佳模型进行预测
best_model = grid_search.best_estimator_
y_pred_best = best_model.predict(X_test)
accuracy_best = accuracy_score(y_test, y_pred_best)
print(f"使用最佳模型的测试集准确率: {accuracy_best:.2f}")

结论

        通过本教程,你已经全面了解了 Scikit-learn 的基本使用方法和高级功能。从数据预处理、模型构建、模型评估到模型调优,Scikit-learn 提供了一套完整的机器学习解决方案。它的统一 API 设计使得各个算法之间的切换和比较变得非常容易。无论你是机器学习的新手还是经验丰富的开发者,Scikit-learn 都是一个不可或缺的工具,帮助你高效地构建和部署机器学习模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885612.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

PFC和LLC的本质和为什么要用PFC和LLC电路原因

我们可以用电感和电容的特性,以及电压和电流之间的不同步原理来解释PFC(功率因数校正)和LLC(谐振变换器)。 电感和电容的基本概念 电感(Inductor): 电感是一种储存电能的组件。它的电流变化比较慢,电流在电感中延迟,而电压变化得比较快。可以把电感想象成一个“滞后…

Tensorflow 2.0 cnn训练cifar10 准确率只有0.1 [已解决]

cifar10 准确率只有0.1 问题描述踩坑解决办法 问题描述 如果你看的是北京大学曹健老师的tensorflow2.0,你在class5的部分可能会遇见这个问题 import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.layers import Dense, Dropout,MaxPooling2D,Fla…

【Verilog学习日常】—牛客网刷题—Verilog企业真题—VL69

脉冲同步器(快到慢) 描述 sig_a 是 clka(300M)时钟域的一个单时钟脉冲信号(高电平持续一个时钟clka周期),请设计脉冲同步电路,将sig_a信号同步到时钟域 clkb(100M&…

长文本溢出,中间位置显示省略号

1.说明 Flutter支持在文本末尾显示溢出省略号。现在想要实现在文本中间位置显示省略号,这里使用的方法是通过TextPainter计算文本宽度。(我目前没有找到更好的方法,欢迎大家指教。) 2.效果 源码 1.MiddleEllipsisTextPainter …

全球IP归属地查询-IP地址查询-IP城市查询-IP地址归属地-IP地址解析-IP位置查询-IP地址查询API接口

IP地址城市版查询接口 API是指能够根据IP地址查询其所在城市等地理位置信息的API接口。这类接口在网络安全、数据分析、广告投放等多个领域有广泛应用。以下是一些可用的IP地址城市版查询接口API及其简要介绍 1. 快证 IP归属地查询API 特点:支持IPv4 提供高精版、…

TypeScript 算法手册 【数组基础知识】

文章目录 1. 数组简介1.1 数组定义1.2 数组特点 2. 数组的基本操作2.1 访问元素2.2 添加元素2.3 删除元素2.4 修改元素2.5 查找元素 3. 数组的常见方法3.1 数组的创建3.2 数组的遍历3.3 数组的映射3.4 数组的过滤3.5 数组的归约3.6 数组的查找3.7 数组的排序3.8 数组的反转3.9 …

深度学习常见术语介绍

文章目录 数据集(Dataset)特征(Feature)标签(Label)训练集(Training Set)测试集(Test Set)验证集(Validation Set)模型(Mo…

什么是文件完整性监控(FIM)

组织经常使用基于文件的系统来组织、存储和管理信息。文件完整性监控(FIM)是一种用于监控和验证文件和系统完整性的技术,识别用户并提醒用户对文件、文件夹和配置进行未经授权或意外的变更是 FIM 的主要目标,有助于保护关键数据和…

【NVIDIA】如何使用nvidia-smi命令管理和监控GPU

博主未授权任何人或组织机构转载博主任何原创文章,感谢各位对原创的支持! 博主链接 本人就职于国际知名终端厂商,负责modem芯片研发。 在5G早期负责终端数据业务层、核心网相关的开发工作,目前牵头6G算力网络技术标准研究。 博客…

Golang | Leetcode Golang题解之第436题寻找右区间

题目: 题解: func findRightInterval(intervals [][]int) []int {n : len(intervals)type pair struct{ x, i int }starts : make([]pair, n)ends : make([]pair, n)for i, p : range intervals {starts[i] pair{p[0], i}ends[i] pair{p[1], i}}sort.…

面向人工智能: 对红酒数据集进行分析 (实验四)

由于直接提供截图是不切实际的,我将详细解释如何使用scikit-learn(通常称为sk-learn)自带的红酒数据集进行葡萄酒数据的分析与处理。这包括实验要求的分析、数据的初步分析(完整性和重复性)以及特征之间的关联关系分析…

MATLAB绘图基础9:多变量图形绘制

参考书:《 M A T L A B {\rm MATLAB} MATLAB与学术图表绘制》(关东升)。 9.多变量图形绘制 9.1 气泡图 气泡图用于展示三个或更多变量变量之间的关系,气泡图的组成要素: 横轴( X {\rm X} X轴):表示数据集中的一个变量&#xff0c…

双端搭建个人博客

1. 准备工作 确保你的两个虚拟机都安装了以下软件: 虚拟机1(Web服务器): Apache2, PHP虚拟机2(数据库服务器): MariaDB2. 安装步骤 虚拟机1(Web服务器) 安装Apache2和PHP 更新系统包列表: sudo apt update安装Apache2: sudo apt install apache2 -y安装PHP及其Apac…

只写CURD后台管理的Java后端要如何提升自己

你是否工作3~5年后,发现日常只做了CURD的简单代码。 你是否每次面试就会头疼,自己写的代码,除了日常CURD简历上毫无亮点可写 抱怨过苦恼过也后悔过,但是站在现在的时间点回想以前,发现有很多事情我们是可以做的更好的。…

Spring之生成Bean

Bean的生命周期:实例化->属性填充->初始化->销毁 核心入口方法:finishBeanFactoryInitialization-->preInstantiateSingletons DefaultListableBeanFactory#preInstantiateSingletons用于实例化非懒加载的bean。 1.preInstantiateSinglet…

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26

计算机前沿技术-人工智能算法-大语言模型-最新研究进展-2024-09-26 1. LLMs Still Can’t Plan; Can LRMs? A Preliminary Evaluation of OpenAI’s o1 on PlanBench Authors: Karthik Valmeekam, Kaya Stechly, Subbarao Kambhampati LLMs仍然无法规划;LRMs可以…

Mybatis的基本使用

什么是Mybatis? Mybatis是一个简化JDBC的持久层框架,MyBatis是一个半自动化框架,是因为它在SQL执行过程中只提供了基本的SQL执行功能,而没有像Hibernate那样将所有的ORM操作都自动化了。在MyBatis中,需要手动编写SQL语…

【Android】布局优化—include,merge,ViewStub的使用方法

引言 1.重要性 在Android应用开发中,布局是用户界面的基础。一个高效的布局不仅能提升用户体验,还能显著改善应用的性能。随着应用功能的复杂性增加,布局的优化变得尤为重要。优化布局能够减少渲染时间,提高响应速度&#xff0c…

Docker安装consul + go使用consul + consul知识

1. 什么是服务注册和发现 假如这个产品已经在线上运行,有一天运营想搞一场促销活动,那么我们相对应的【用户服务】可能就要新开启三个微服务实例来支撑这场促销活动。而与此同时,作为苦逼程序员的你就只有手动去 API gateway 中添加新增的这…

探索分布式IO模块的介质冗余:赋能工业自动化的稳健之心

在日新月异的工业自动化领域,每一个细微环节的稳定性都直接关系到生产线的效率与安全。随着智能制造的深入发展,分布式IO(Input/Output)模块作为连接现场设备与控制系统的关键桥梁,其重要性日益凸显。我们自主研发的带…