Docker安装consul + go使用consul + consul知识

1. 什么是服务注册和发现

假如这个产品已经在线上运行,有一天运营想搞一场促销活动,那么我们相对应的【用户服务】可能就要新开启三个微服务实例来支撑这场促销活动。而与此同时,作为苦逼程序员的你就只有手动去 API gateway 中添加新增的这三个微服务实例的 ip 与port ,一个真正在线的微服务系统可能有成百上千微服务,难道也要一个一个去手动添加吗?有没有让系统自动去实现这些操作的方法呢?答案当然是有的。
当我们新添加一个微服务实例的时候,微服务就会将自己的 ip 与 port 发送到注册中心,在注册中心里面记录起来。当 API gateway 需要访问某些微服务的时候,就会去注册中心取到相应的 ip 与 port。从而实现自动化操作。

1. 技术选型

Consul 与其他常见服务发现框架对比

名称优点缺点接口一致性算法
zookeeper1.功能强大,不仅仅只是服务发现 2.提供 watcher 机制能实时获取服务提供者的状态 3.dubbo 等框架支持1.没有健康检查 2.需在服务中集成 sdk,复杂度高 3.不支持多数据中心sdkPaxos
consul1.简单易用,不需要集成 sdk 2.自带健康检查 3.支持多数据中心 4.提供 web 管理界面1.不能实时获取服务信息的变化通知http/dnsRaft
etcd1.简单易用,不需要集成 sdk 2.可配置性强1.没有健康检查 2.需配合第三方工具一起完成服务发现 3.不支持多数据中心httpRaft

2.consul的安装和配置

2.1. 安装

docker run -d -p 8500:8500 -p 8300:8300 -p 8301:8301 -p 8302:8302 -p 8600:8600/udp consul consul agent -dev -client=0.0.0.0

docker container update --restart=always 容器名字

2.2. 访问

浏览器访问 127.0.0.1:8500

2.3. 访问dns

consul提供dns功能,可以让我们通过, 可以通过dig命令行来测试,consul默认的dns端口是8600, 命令行:
linux下的dig命令安装:
yum install bind-utils

dig @192.168.1.103 -p 8600 consul.service.consul SRV

windows下载dig命令 : BIND9.17.2.x64.zip

3.consul的api接口

3.1. 添加服务

https://www.consul.io/api-docs/agent/service#register-service

3.2. 删除服务

https://www.consul.io/api-docs/agent/service#deregister-service

3.3. 设置健康检查

https://www.consul.io/api-docs/agent/check

3.4. 同一个服务注册多个实例

3.5. 获取服务

https://www.consul.io/api-docs/agent/service#list-services

4.go操作consul

package main
import (
    "fmt"
    "github.com/hashicorp/consul/api"
    )
func Register(address string, port int, name string, tags []string, id string) error {
    cfg := api.DefaultConfig()
    cfg.Address = "192.168.1.103:8500"
    client, err := api.NewClient(cfg)
    if err != nil {
        panic(err)
    }
    //生成对应的检查对象
    check := &api.AgentServiceCheck{
        HTTP: "http://192.168.1.102:8021/health",
        Timeout: "5s",
        Interval: "5s",
        DeregisterCriticalServiceAfter: "10s",
    }
    //生成注册对象
    registration := new(api.AgentServiceRegistration)
    registration.Name = name
    registration.ID = id
    registration.Port = port
    registration.Tags = tags
    registration.Address = address
    registration.Check = check
    err = client.Agent().ServiceRegister(registration)
    if err != nil {
        panic(err)
    }
    return nil
}
func AllServices(){
    cfg := api.DefaultConfig()
    cfg.Address = "192.168.1.103:8500"
    client, err := api.NewClient(cfg)
    if err != nil {
        panic(err)
    }
    data, err := client.Agent().Services()
    if err != nil {
        panic(err)
    }
    for key, _ := range data{
        fmt.Println(key)
    }
}
func FilterSerivice(){
    cfg := api.DefaultConfig()
    cfg.Address = "192.168.1.103:8500"
    client, err := api.NewClient(cfg)
    if err != nil {
        panic(err)
    }
    data, err := client.Agent().ServicesWithFilter(`Service == "user-web"`)
    if err != nil {
        panic(err)
    }
    for key, _ := range data{
        fmt.Println(key)
    }
}
func main(){
    //_ = Register("192.168.1.102", 8021, "user-web", []string{"mxshop", "bobby"}, "user-web")
    //AllServices()
    FilterSerivice()
}

5.grpc下的健康检查

5.1. grpc的健康检查规范

官方文档
grpc健康检查重要点:

  1. check = {
    “GRPC”: "ip:port",
    “GRPCUseTLS”: False,
    “Timeout”: “5s”,
    “Interval”: “5s”,
    “DeregisterCriticalServiceAfter”: “5s”,
    }
  2. 一定要确保网络是通的

  3. 一定要确保srv服务监听端口是对外可访问的(公网ip地址不是本地的127.0.0.1)
  4. GRPC一定要自己填写

5.2. go配置grpc的健康检查

//注册服务健康状态检查
grpc_health_v1.RegisterHealthServer(g, health.NewServer())

6.动态获取可用端口号

package utils
import (
    "net"
)
func GetFreePort() (int, error) {
    addr, err := net.ResolveTCPAddr("tcp", "localhost:0")
    if err != nil {
        return 0, err
    }
    l, err := net.ListenTCP("tcp", addr)
    if err != nil {
        return 0, err
    }
    defer l.Close()
    return l.Addr().(*net.TCPAddr).Port,  nil
}

7.负载均衡策略

1. 什么是负载均衡

7.负载均衡策略 - 图1

2. 负载均衡策略

1. 集中式load balance

集中式LB方案,如下图。首先,服务的消费方和提供方不直接耦合,而是在服务消费者和服务提供者之间有一个独立的LB(LB通常是专门的硬件设备如F5,或者基于软件如LVS,HAproxy等实现)。

7.负载均衡策略 - 图2

LB上有所有服务的地址映射表,通常由运维配置注册,当服务消费方调用某个目标服务时,它向LB发起请求,由LB以某种策略(比如Round-Robin)做负载均衡后将请求转发到目标服务。
LB一般具备健康检查能力,能自动摘除不健康的服务实例。
服务消费方如何发现LB呢?通常的做法是通过DNS,运维人员为服务配置一个DNS域名,这个域名指向LB。
这种方案基本可以否决,因为它有致命的缺点:所有服务调用流量都经过load balance服务器,所以load balance服务器成了系统的单点,一旦LB发生故障对整个系统的影响是灾难性的。为了解决这个问题,必然需要对这个load balance部件做分布式处理(部署多个实例,冗余,然后解决一致性问题等全家桶解决方案),但这样做会徒增非常多的复杂度。

2. 进程内load balance

进程内load balance。将load balance的功能和算法以sdk的方式实现在客户端进程内。先看架构图:

7.负载均衡策略 - 图3

可看到引入了第三方:服务注册中心。它做两件事:

  1. 维护服务提供方的节点列表,并检测这些节点的健康度。检测的方式是:每个节点部署成功,都通知服务注册中心;然后一直和注册中心保持心跳。
  2. 允许服务调用方注册感兴趣的事件,把服务提供方的变化情况推送到服务调用方。

这种方案下,整个load balance的过程是这样的:

  1. 服务注册中心维护所有节点的情况。
  2. 任何一个节点想要订阅其他服务提供方的节点列表,向服务注册中心注册。
  3. 服务注册中心将服务提供方的列表(以长连接的方式)推送到消费方。
  4. 消费方接收到消息后,在本地维护一份这个列表,并自己做load balance。

可见,服务注册中心充当什么角色?它是唯一一个知道整个集群内部所有的节点情况的中心。所以对它的可用性要求会非常高,这个组件可以用Zookeeper实现。
这种方案的缺点是:每个语言都要研究一套sdk,如果公司内的服务使用的语言五花八门的话,这方案的成本会很高。第二点是:后续如果要对客户库进行升级,势必要求服务调用方修改代码并重新发布,所以该方案的升级推广有不小的阻力。

3. 独立进程load balance

该方案是针对第二种方案的不足而提出的一种折中方案,原理和第二种方案基本类似,不同之处是,他将LB和服务发现功能从进程内移出来,变成主机上的一个独立进程,主机上的一个或者多个服务要访问目标服务时,他们都通过同一主机上的独立LB进程做服务发现和负载均衡。如图

7.负载均衡策略 - 图4

这个方案解决了上一种方案的问题,不需要为不同语言开发客户库,LB的升级不需要服务调用方改代码。
但新引入的问题是:这个组件本身的可用性谁来维护?还要再写一个watchdog去监控这个组件?另外,多了一个环节,就多了一个出错的可能,线上出问题了,也多了一个需要排查的环节。

8.常见的负载均衡算法

在分布式系统中,多台服务器同时提供一个服务,并统一到服务配置中心进行管理,消费者通过查询服务配置中心,获取到服务到地址列表,需要选取其中一台来发起RPC远程调用。如何选择,则取决于具体的负载均衡算法,对应于不同的场景,选择的负载均衡算法也不尽相同。负载均衡算法的种类有很多种,常见的负载均衡算法包括轮询法、随机法、源地址哈希法、加权轮询法、加权随机法、最小连接法等,应根据具体的使用场景选取对应的算法。

1. 轮询(Round Robin)法

轮询很容易实现,将请求按顺序轮流分配到后台服务器上,均衡的对待每一台服务器,而不关心服务器实际的连接数和当前的系统负载。

2. 随机法

通过系统随机函数,根据后台服务器列表的大小值来随机选取其中一台进行访问。由概率概率统计理论可以得知,随着调用量的增大,其实际效果越来越接近于平均分配流量到后台的每一台服务器,也就是轮询法的效果。

3. 源地址哈希法

源地址哈希法的思想是根据服务消费者请求客户端的IP地址,通过哈希函数计算得到一个哈希值,将此哈希值和服务器列表的大小进行取模运算,得到的结果便是要访问的服务器地址的序号。采用源地址哈希法进行负载均衡,相同的IP客户端,如果服务器列表不变,将映射到同一个后台服务器进行访问。

4. 加权轮询(Weight Round Robin)法

不同的后台服务器可能机器的配置和当前系统的负载并不相同,因此它们的抗压能力也不一样。跟配置高、负载低的机器分配更高的权重,使其能处理更多的请求,而配置低、负载高的机器,则给其分配较低的权重,降低其系统负载,加权轮询很好的处理了这一问题,并将请求按照顺序且根据权重分配给后端。

5. 加权随机(Weight Random)法

加权随机法跟加权轮询法类似,根据后台服务器不同的配置和负载情况,配置不同的权重。不同的是,它是按照权重来随机选取服务器的,而非顺序。

6. 最小连接数法

前面我们费尽心思来实现服务消费者请求次数分配的均衡,我们知道这样做是没错的,可以为后端的多台服务器平均分配工作量,最大程度地提高服务器的利用率,但是,实际上,请求次数的均衡并不代表负载的均衡。因此我们需要介绍最小连接数法,最小连接数法比较灵活和智能,由于后台服务器的配置不尽相同,对请求的处理有快有慢,它正是根据后端服务器当前的连接情况,动态的选取其中当前积压连接数最少的一台服务器来处理当前请求,尽可能的提高后台服务器利用率,将负载合理的分流到每一台服务器。

9.grpc的负载均衡策略

 9.1. grpc的负载均衡策略

 文档

 9.2. go使用grpc负载均衡

 grpc-consul-resolver地址

 9.3. 关于serverconfig

 官方文档

 9.4. go的grpc测试

  

package main
import (
    "OldPackageTest/grpclb_test/proto"
    "context"
    "fmt"
    "log"
    _ "github.com/mbobakov/grpc-consul-resolver" // It's important
    "google.golang.org/grpc"
)
func main() {
    conn, err := grpc.Dial(
        "consul://192.168.1.103:8500/user-srv?wait=14s&tag=srv",
        grpc.WithInsecure(),
        grpc.WithDefaultServiceConfig(`{"loadBalancingPolicy": "round_robin"}`),
    )
    if err != nil {
        log.Fatal(err)
    }
    defer conn.Close()
    for i := 0; i<10; i++{
        userSrvClient := proto.NewUserClient(conn)
        rsp, err := userSrvClient.GetUserList(context.Background(), &proto.PageInfo{
            Pn:    1,
            PSize: 2,
        })
        if err != nil {
            panic(err)
        }
        for index, data := range rsp.Data{
            fmt.Println(index, data)
        }
    }
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/885586.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

探索分布式IO模块的介质冗余:赋能工业自动化的稳健之心

在日新月异的工业自动化领域&#xff0c;每一个细微环节的稳定性都直接关系到生产线的效率与安全。随着智能制造的深入发展&#xff0c;分布式IO&#xff08;Input/Output&#xff09;模块作为连接现场设备与控制系统的关键桥梁&#xff0c;其重要性日益凸显。我们自主研发的带…

五子棋双人对战项目(3)——匹配模块

一、分析需求 二、约定前后端接口 三、实现游戏大厅页面&#xff08;前端代码&#xff09; 四、实现后端代码 五、线程安全问题 六、忙等问题 一、分析需求 需求&#xff1a;多个玩家&#xff0c;在游戏大厅进行匹配&#xff0c;系统会把实力相近的玩家匹配到一起。 要想实…

Redis 简单的消息队列

使用redis 进行简单的队列很容易&#xff0c;不需要使用较为复杂的MQ队列&#xff0c;直接使用redis 进行&#xff0c;不过唯一不足的需要自己构造生产者消费者&#xff0c;这里使用while True的方法进行消费者操作 目录 介绍数据类型StringHash 重要命令消息队列 介绍 key-v…

钉钉H5微应用Springboot+Vue开发分享

文章目录 说明技术路线注意操作步骤思路图 一、创建钉钉应用二、创建java项目三、创建vue项目&#xff08;或uniapp项目&#xff09;&#xff0c;npm引入sdk的依赖四、拥有公网域名端口。开发环境可以使用&#xff08;贝锐花生壳等工具&#xff09;五、打开钉钉开发者平台&…

Selenium与数据库结合:数据爬取与存储的技术实践

目录 一、Selenium与数据库结合的基础概念 1.1 Selenium简介 1.2 数据库简介 1.3 Selenium与数据库结合的优势 二、Selenium爬取数据的基本步骤 2.1 环境准备 2.2 编写爬虫代码 2.3 数据提取 2.4 异常处理 三、数据存储到数据库 3.1 数据库连接 3.2 数据存储 3.3 …

软件设计师——计算机网络

&#x1f4d4;个人主页&#x1f4da;&#xff1a;秋邱-CSDN博客☀️专属专栏✨&#xff1a;软考——软件设计师&#x1f3c5;往期回顾&#x1f3c6;&#xff1a;&#x1f31f;其他专栏&#x1f31f;&#xff1a;C语言_秋邱 一、OSI/ RM七层模型(⭐⭐⭐) ​ 层次 名称 主要功…

docker下载mysql时出现Unable to pull mysql:latest (HTTP code 500) server error 问题

报错 Unable to pull mysql:latest (HTTP code 500) server error - Get “https://registry-1.docker.io/v2/”: EOF 解决方法 将VPN开到Global模式 解决啦

Could not retrieve https://npm.taobao.org/mirrors/node/index.json. 报错解决

Could not retrieve https://npm.taobao.org/mirrors/node/index.json. 报错解决 1.问题原因及解约 今天使用nvm下载不同版本的nodejs的时候报错了 C:\Users\1> nvm list availableCould not retrieve https://npm.taobao.org/mirrors/node/index.json.提示无法检索地址&…

Oracle控制文件全部丢失如何使用RMAN智能恢复?

1.手动删除所有控制文件模拟故障产生 2.此时启动数据库发现控制文件丢失 3.登录rman 4.列出故障 list failure; 5.让RMAN列举恢复建议 advise failure; 6.使用RMAN智能修复 repair failure;

基于Springboot+Vue的基于协同过滤算法的个性化音乐推荐系统 (含源码数据库)

1.开发环境 开发系统:Windows10/11 架构模式:MVC/前后端分离 JDK版本: Java JDK1.8 开发工具:IDEA 数据库版本: mysql5.7或8.0 数据库可视化工具: navicat 服务器: SpringBoot自带 apache tomcat 主要技术: Java,Springboot,mybatis,mysql,vue 2.视频演示地址 3.功能 系统中…

Ubuntu Server 20.04 64bit定时备份MySQL8.0.36数据库数据

一、编写sh脚本 常见备份命令介绍 我选用的是mysqldump命令&#xff0c;命令使用简介 [root]> mysqldump -helpUsage: mysqldump [OPTIONS] database_name [tables] OR mysqldump [OPTIONS] --databases [OPTIONS] DB1 [DB2 DB3...] OR mysqldump [OPTIONS] --all…

足球青训俱乐部管理:Spring Boot技术驱动

摘 要 随着社会经济的快速发展&#xff0c;人们对足球俱乐部的需求日益增加&#xff0c;加快了足球健身俱乐部的发展&#xff0c;足球俱乐部管理工作日益繁忙&#xff0c;传统的管理方式已经无法满足足球俱乐部管理需求&#xff0c;因此&#xff0c;为了提高足球俱乐部管理效率…

VMware Aria Automation Orchestrator 8.18 发布,新增功能概览

VMware Aria Automation Orchestrator 8.18 - 现代工作流程自动化平台 请访问原文链接&#xff1a;https://sysin.org/blog/vmware-aria-automation-orchestrator/&#xff0c;查看最新版。原创作品&#xff0c;转载请保留出处。 作者主页&#xff1a;sysin.org 现代工作流程…

超强大的 Nginx 可视化管理工具

今天给大家介绍一款 Nginx 可视化管理界面&#xff0c;非常好用&#xff0c;小白也能立马上手。 nginx-proxy-manager 是一个反向代理管理系统&#xff0c;它基于 NGINX&#xff0c;具有漂亮干净的 Web UI。还可以获得受信任的 SSL 证书&#xff0c;并通过单独的配置、自定义和…

SUP-NeRF-ECCV2024数据集: 单目3D对象重建的新突破

2024-09-25&#xff0c;由Bosch Research North America和Michigan State University联合发布的SUP-NeRF&#xff0c;是一个基于单目图像进行3D对象重建的新型方法。一个无缝集成姿态估计和物体重建的统一网格。 ECCV&#xff1a;欧洲计算机视觉会议的缩写&#xff0c;它是计算…

2024年配置YOLOX运行环境+windows+pycharm24.0.1+GPU

1.配置时间2024/9/25 2.Anaconda-python版本3.7&#xff0c;yolox版本0.2.0 YOLOX网址: https://github.com/Megvii-BaseDetection/YOLOX 本人下载的这个版本 1.创建虚拟环境 conda create -n yolox37 python37 激活 conda activate yolox37 2.安装Pytorch cuda等&…

CSS 效果:实现动态展示双箭头

最近写了一段 CSS 样式&#xff0c;虽然不难&#xff0c;但实现过程比较繁琐。这个效果结合了两个箭头&#xff0c;一个突出&#xff0c;一个内缩&#xff0c;非常适合用于步骤导航或选项卡切换等场景。样式不仅仅是静态的&#xff0c;还可以通过点击 click 或者 hover 事件&am…

肺癌影像智能诊断项目

1 项目背景 肺癌是发病率和死亡率增长最快、对人类健康和生命威胁最大的恶性肿瘤之一,近50年来许多国家都报道肺癌的发病率和死亡率均明显增高。据国家癌症中心统计,我国肺癌发病人数和死亡人数已连续10年位居恶性肿瘤之首,每年新发肺癌约78.7万人,因肺癌死亡约63.1万人。早…

深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制

我的主页&#xff1a;2的n次方_ 1. JVM 内存区域划分 程序计数器&#xff08;空间比较小&#xff09;。保存了下一条要执行的指令的地址&#xff08;指向元数据区指令的地址&#xff09;堆。JVM 最大的空间&#xff0c;new 出来的对象都在堆上栈。函数中的局部变量&#x…

SpringMVC源码-AbstractHandlerMethodMapping处理器映射器将@Controller修饰类方法存储到处理器映射器

SpringMVC九大内置组件之HandlerMapping处理器映射器-AbstractHandlerMethodMapping类以及子类RequestMappingHandlerMapping如何将Controller修饰的注解类以及类下被注解RequestMapping修饰的方法存储到处理器映射器中。 从RequestMappingHandlerMapping寻找: AbstractHandle…