yolov8/9/10模型在仪表盘、指针表检测中的应用【代码+数据集+python环境+训练/应用GUI系统】

可视化训练系统

可视化应用系统

yolov8/9/10模型在仪表盘、指针表检测中的应用【代码+数据集+python环境+训练/应用GUI系统】

背景意义

随着科学技术的快速发展,机器视觉以及人工智能等技术逐渐从理论走向实践,并在各个领域得到广泛应用。机器视觉检测系统已经成为产品计算机集成制造、质量控制技术的重要基础之一。在汽车制造等行业中,仪表盘作为驾驶员与车辆信息传递的“桥梁”,其准确性和稳定性至关重要。然而,传统的仪表盘检测方式主要依赖人工,存在时间长、效率低、可靠性差等问题。因此,行业对高效、自动化、高精度的仪表盘检测需求日益迫切。汽车制造商面临激烈的市场竞争,需要不断提高生产效率和产品质量以满足消费者需求。仪表盘作为汽车的重要组成部分,其检测质量和效率直接影响到整车的质量和市场竞争力。

基于计算机视觉的仪表盘检测系统能够实现高效、高重复性、高可靠性的检测流程,避免了人工检测的弊端,提高了检测效率和准确性。降低人力成本:自动化检测系统能够减少人工干预,降低人力成本,同时提高检测的一致性和重复性。通过对仪表盘进行精确检测,可以及时发现潜在的质量问题并进行修复,从而提升产品质量和客户满意度。基于计算机视觉的仪表盘检测系统是智能制造的重要组成部分,其应用有助于推动汽车制造等行业的智能化升级和转型。仪表盘作为驾驶员获取车辆信息的重要渠道,其准确性和稳定性直接关系到驾驶安全。基于计算机视觉的检测系统能够确保仪表盘读数和提示符号的准确性,为驾驶安全提供有力保障。

基于计算机视觉的仪表盘检测具有深远的背景意义和重要的应用价值。随着技术的不断进步和应用场景的拓展,其将在更多领域发挥重要作用。

YOLO算法在仪表盘、指针表检测识别中的应用

YOLO算法的核心思想是将目标检测问题转化为一个回归问题,即直接在输出层回归出目标边界框的位置和类别。从YOLOv1到YOLOv8,该算法经历了多次迭代和优化,不断提高了检测速度和精度。其中,YOLOv8作为最新版本的算法,在保持高速度的同时,进一步提升了检测的准确性。

YOLO算法通过卷积神经网络(CNN)对图像进行特征提取,然后利用回归算法预测手部关键点的位置。在手部关键点检测中,关键点通常包括手指关节、手腕等部位的坐标信息。优势在于:速度快:YOLO算法采用单次检测机制,减少了计算量,实现了快速检测;精度高:通过深度学习方法对图像进行特征提取和关键点预测,提高了检测的准确性;易于扩展:YOLO算法的开源性和模块化设计使得用户可以轻松地进行扩展和改进,以适应不同的应用场景。

YOLO算法原理

YOLO(You Only Look Once)关键点检测的算法原理主要基于YOLO目标检测算法进行改进,其核心思想是将关键点检测问题转化为一个回归问题。

1. 网络结构

基础网络:YOLO关键点检测算法通常采用卷积神经网络(CNN)作为基础网络,用于提取图像的特征。

关键点回归分支:在网络的最后一层添加关键点的回归分支,用于预测关键点的位置。这一分支通过训练学习,能够输出每个目标的关键点坐标。

2. 数据标注

在训练阶段,需要对每个目标标注其关键点的位置。这通常通过人工标注的方式完成,将关键点的坐标标注在图像上。这些标注数据将作为训练网络的输入,帮助网络学习如何预测关键点位置。

3. 损失函数

YOLO关键点检测算法通常采用平方差损失函数来度量预测值与真实值之间的差距。损失函数包括目标位置的损失和关键点位置的损失。通过最小化损失函数,可以优化网络参数,提高关键点检测的准确率。

4. 预测过程

在测试阶段,通过网络的前向传播即可得到目标的关键点位置。这一过程是实时的,且具有较高的检测速度。

5. 非极大值抑制(NMS)

在得到多个预测结果后,YOLO关键点检测算法通常采用非极大值抑制(NMS)来抑制重叠的检测结果,只保留置信度最高的检测结果。这有助于减少误检和漏检的情况。

7. 优缺点

优点:

实时性较好:通过一次前向传播即可实现目标的检测和关键点的预测。

准确率较高:相对于传统方法,YOLO关键点检测算法在预测关键点位置时具有较高的准确率。

缺点:

对小目标的检测效果不佳:由于小目标的关键点难以精确定位,因此容易出现漏检情况。

对遮挡目标的检测效果不佳:遮挡会对关键点的检测造成困难,导致定位不准确。

数据集介绍

数据集主要类别为:

names:
  0:
meter

示例图片如下:

 

将数据集划分为训练集、测试集以及验证:

设置数据集在yolov8中的配置文件为:

​​​​​​​代码示例与可视化训练/应用系统

设置训练、测试、推理的参数,进行编写代码:

训练代码:

分别运行对应的代码可以进行训练、测试、单张图片推理。

    设计对应的应用系统GUI界面如下:

设计可视化训练系统如下:

​​​​​​​安装使用说明

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

确保代码所在的路径不能出现中文!!!!!!!

为了方便使用本代码,将python的虚拟环境一并附带在压缩包内,运行对应的Windows的bat脚本可以执行对应的代码。

运行该脚本可以直接执行GUI代码,进入上述界面。不需要再次配置python的环境。

运行:run_train_GUI,bat

​​​​​​​联系方式

我们非常乐意根据您的特定需求提供高质量的定制化开发服务。为了确保项目的顺利进行和最终交付的质量,我们将依据项目的复杂性和工作量来评估并收取相应的服务费用,欢迎私信联系我哈~~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885378.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

使用powershell的脚本报错:因为在此系统中禁止执行脚本

1.添加powershell功能环境: 2.启动powershell的执行策略 因为在此系统中禁止执行脚本。 set-executionpolicy unrestricted

若依生成主子表

一、准备工作 确保你已经部署了若依框架,并且熟悉基本的开发环境配置。同时,理解数据库表结构对于生成代码至关重要。 主子表代码结构如下(字表中要有一个对应主表ID的字段作为外键,如下图的customer_id) -- ------…

springboot 集成 camunda

项目地址: stormlong/springboot-camundahttps://gitee.com/stormlong/springboot-camunda 官网集成引导 进入官网 https://camunda.com/ 选择 camunda7 滑倒页面底部 进入 getStart 页面 https://start.camunda.com/ 点击 GENERATE 下载导入 idea 即可 流程设计…

水波荡漾效果+渲染顺序+简单UI绘制

创建场景及布置 创建新场景Main,在Main场景中创建一个plane物体,命名为WaterWavePla,具体数值及层级面板排布如下: 编写脚本 创建一个文件夹,用于存放脚本,命名Scripts,创建一个子文件夹Effect,存放特效相关脚本,创建…

grafana全家桶-loki promtail收集k8s容器日志

loki是grafana旗下轻量级日志收集工具,为了减少loki对集群的影响,把loki的agent日志收集端promtail部署在k8s集群中,loki server部署在集群外面。这样简单做一个解耦,避免大量读写的应用影响到集群内业务服务。 一、promtail部署…

Transformer算法7个面试常见问题

1.Transformer为何使用多头注意力机制?(为什么不使用一个头) 英文论文中是这么说的: Multi-head attention allows the model to jointly attend to information from different representation subspaces at different position…

1.1.5 计算机网络的性能指标(上)

信道: 表示向某一方向传送信息的通道(信道!通信线路)一条通信线路在逻辑上往往对应一条发送信道和一条接收信道。 速率: 指连接到网络上的节点在信道上传输数据的速率。也称数据率或比特率、数据传输速率。 速率单…

(二)大模型调用

一、基本概念 1.1、Prompt 大模型的所有输入,即,我们每一次访问大模型的输入为一个 Prompt, 而大模型给我们的返回结果则被称为 Completion。 1.2、Temperature LLM 生成是具有随机性的,在模型的顶层通过选取不同预测概率的预测结…

职称评审难在哪?

没有项目业绩资料? 社保不符合? 看不懂评审文件? 申报材料不会做? 论文没地发表? 有这些疑问的 评论区滴滴

[Python学习日记-33] Python 中的嵌套函数、匿名函数和高阶函数

[Python学习日记-33] Python 中的嵌套函数、匿名函数和高阶函数 简介 嵌套函数 匿名函数 高阶函数 简介 在 Python 当中函数除了能减少重复代码、扩展性强和易维护外,其实还有挺多不通的玩法的,例如嵌套函数、匿名函数、高阶函数等,它们是…

毕业论文设计javaweb+VUE高校教师信息管理系统

目录 一、系统概述 二、功能详解 1. 教师管理 2. 部门管理 3. 奖惩管理 4. 业绩管理 5. 培训管理 6. 报表查询 三、总结 四、示例代码 1 前端VUE 2 后端SpringBootjava 3 数据库表 随着教育信息化的发展,传统的手工管理方式已经不能满足现代学校对教师…

算法葫芦书(笔试面试)

一、特征工程 1.特征归一化:所有特征统一到一个区间内 线性函数归一化(0到1区间)、零均值归一化(均值0,标准差1) 2.类比型特征->数值性特征 序号编码、独热编码、二进制编码(010&#xf…

Squaretest单元测试辅助工具使用

1、idea安装插件 Squaretest 然后关掉idea 2、安装字节码软件(jclasslib) 3、找到idea里面的Squaretest安装目录 找到包含TestStarter的jar包 4、打开 com.squaretest.c.f 打开后选择常量池 5、找到第16个修改 Long value值,修改的数字即为使…

C语言系列4——指针与数组(1)

我们开始C语言的指针与数组 这部分开始进阶了,得反复学习 在开始正题之前,写说一下我们都知道当写一个函数的时候需要进行传参,当实参传递给形参的时候,形参是有独立空间的,那么数组传参又是怎么样的呢,我…

基于Spring Boot+Vue的减肥健康管理系统设计和实现【原创】(BMI算法,协同过滤算法、图形化分析)

🎈系统亮点:图形化分析、BMI算法,协同过滤算法; 一.系统开发工具与环境搭建 1.系统设计开发工具 后端使用Java编程语言的Spring boot框架 项目架构:B/S架构 运行环境:win10/win11、jdk17 前端&#xff1a…

TI DSP TMS320F280025 Note17:CMPSS原理与使用

TMS320F280025 模数转换器(ADC) ` 文章目录 TMS320F280025 模数转换器(ADC)CMPSS框图比较器参考斜坡发生器滤波器比较器应用CMPSSDriver.cCMPSSDriver.hEPWM与CMPSS配合使用信号流程EPWMDriver.cEPWMDriver.hCMPSS框图 所谓比较器,正端输入大于负端输入时,输出高;正端输入小…

启动 Ntopng 服务前需先启动 redis 服务及 Ntopng 常用参数介绍

启动Ntopng服务之前需要先启动redis服务,因为Ntopng服务依赖于redis服务的键值存储。 服务重启 服务启动 Ntopng常用参数: -d 将 Ntopng 进程放入后台执行。默认情况下,Ntop 在前台运行。 -u 指定启动Ntopng执行的用户,默认为…

基于Hadoop的NBA球员大数据分析及可视化系统

作者:计算机学姐 开发技术:SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等,“文末源码”。 专栏推荐:前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码 精品专栏:Java精选实战项目…

Mysql 删除表的所有数据

在 MySQL 中,如果你想要删除一个表中的所有数据,可以使用 TRUNCATE TABLE 命令或者 DELETE 语句。下面是两种方法的对比以及如何使用它们: 使用 TRUNCATE TABLE TRUNCATE TABLE 是一个非常快速的方法来删除表中的所有记录,并且它…

MFU简介

1、缩写 MFU - Mask Field Utilization(光刻掩膜版有效利用比例) GDPW - Gross Die Per Wafer,每张wafer上die的数量 2、什么是MASK 在光刻机中,光源(紫外光、极紫外光)透过mask曝光在晶圆上形成图…