第一弹:llama.cpp编译

1.编译llama.cpp命令行(电脑版本);

2.交叉编译安卓命令行版本。

一、Llama.cpp是什么?

二、Llama.cpp编译

首先我们尝试编译llama.cpp.

2.1 下载llama.cpp

项目的github地址:

https://github.com/ggerganov/llama.cpp

2.1.1 采用git克隆项目

可以采用git下载:

$ git clone https://github.com/ggerganov/llama.cpp

然后同步submodules

$ cd llama.cpp
$ git submodule update kompute

因为科学上网的问题,如果一直同步失败。这种情况下,可以考虑下载项目的方式。

2.1.2 手动下载项目

1)下载llama.cpp

llama.cpp项目页,code-->DownloadZip,然后下载。下载得到压缩包​llama.cpp-master.zip​,然后解压缩。

2)下载submodule。

[submodule "kompute"]
	path = ggml/src/kompute
	url = https://github.com/nomic-ai/kompute.git

项目--》ggml-->src-->kompute @ 4565194 点击进入,同样(code-->DownloadZip),下载完成后,解压缩,然后拷贝到目标目录。

ggml/src/kompute

这样,项目就下载成功了。

2.2 编译项目

llama.cpp提供了本地API调用版本(直接调用本地模型进行推理),以及服务端版本(C/S架构)。

我们采用本地API版本。

首先看项目下的README.md

$ make -j && ./llama-cli -m models/llama-13b-v2/ggml-model-q4_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -n 400 -e

可以看到,直接采用make编译。项目已经配置了cmake.

2.2.1 如何编译

在项目的docs/build.md, 有编译说明文档。

Linux or MacOS:采用make编译:
$ make

采用cmake编译: 

  $ cmake -B build
  $ cmake --build build --config Release

我们直接使用 make编译。

编译完成以后,会在项目下生成一个build目录,生成物在此目录下。

项目根目录或者bin目录下是生成的可执行文件。此目录下的 llama-cli 和main 就是llama.cpp的命令行程序。

2.2.2 测试大模型推理

$ chmod +x llama-cli
$ ./llama-cli -m [模型名] --prompt [提问]
$ ./llama-cli -m [模型名] -p [提问]

提问可以使用 -p 或者 -- prompt 

例如:可以选择一个模型。模型未下载的话需要先进行下载。

$ ./llama-cli -m ./models/MiniCPM-0-2-Q4_K.gguf --prompt "北京有什么好玩的地方"

得到推理结果: 

build: 0 (unknown) with Android (11349228, +pgo, +bolt, +lto, -mlgo, based on r487747e) clang version 17.0.2 (https://android.googlesource.com/toolchain/llvm-project d9f89f4d16663d5012e5c09495f3b30ece3d2362) for x86_64-apple-darwin23.2.0
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 24 key-value pairs and 219 tensors from ./models/MiniCPM-0-2-Q4_K.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = minicpm
llama_model_loader: - kv   1:                               general.name str              = MiniCPM
llama_model_loader: - kv   2:                     minicpm.context_length u32              = 8192
llama_model_loader: - kv   3:                   minicpm.embedding_length u32              = 1024
llama_model_loader: - kv   4:                        minicpm.block_count u32              = 24
llama_model_loader: - kv   5:                minicpm.feed_forward_length u32              = 2560
llama_model_loader: - kv   6:               minicpm.rope.dimension_count u32              = 128
llama_model_loader: - kv   7:               minicpm.attention.head_count u32              = 8
llama_model_loader: - kv   8:            minicpm.attention.head_count_kv u32              = 2
llama_model_loader: - kv   9:   minicpm.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  10:                          general.file_type u32              = 15
llama_model_loader: - kv  11:                        minicpm.tie_lm_head bool             = false
llama_model_loader: - kv  12:                       tokenizer.ggml.model str              = llama
llama_model_loader: - kv  13:                         tokenizer.ggml.pre str              = default
llama_model_loader: - kv  14:                      tokenizer.ggml.tokens arr[str,122753]  = ["<unk>", "<s>", "</s>", "<SEP>", "<C...
llama_model_loader: - kv  15:                      tokenizer.ggml.scores arr[f32,122753]  = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv  16:                  tokenizer.ggml.token_type arr[i32,122753]  = [3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  18:                tokenizer.ggml.eos_token_id u32              = 2
llama_model_loader: - kv  19:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  20:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  21:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  22:                    tokenizer.chat_template str              = {% for message in messages %}{% if me...
llama_model_loader: - kv  23:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:   49 tensors
llama_model_loader: - type q4_K:  145 tensors
llama_model_loader: - type q6_K:   25 tensors
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.7660 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = minicpm
llm_load_print_meta: vocab type       = SPM
llm_load_print_meta: n_vocab          = 122753
llm_load_print_meta: n_merges         = 0
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 8192
llm_load_print_meta: n_embd           = 1024
llm_load_print_meta: n_layer          = 24
llm_load_print_meta: n_head           = 8
llm_load_print_meta: n_head_kv        = 2
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 4
llm_load_print_meta: n_embd_k_gqa     = 256
llm_load_print_meta: n_embd_v_gqa     = 256
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-05
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 2560
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 0
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 8192
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 503.11 M
llm_load_print_meta: model size       = 309.47 MiB (5.16 BPW) 
llm_load_print_meta: general.name     = MiniCPM
llm_load_print_meta: BOS token        = 1 '<s>'
llm_load_print_meta: EOS token        = 2 '</s>'
llm_load_print_meta: UNK token        = 0 '<unk>'
llm_load_print_meta: LF token         = 1099 '<0x0A>'
llm_load_print_meta: max token length = 48
llm_load_tensors: ggml ctx size =    0.20 MiB
llm_load_tensors: offloading 24 repeating layers to GPU
llm_load_tensors: offloading non-repeating layers to GPU
llm_load_tensors: offloaded 25/25 layers to GPU
llm_load_tensors:      Metal buffer size =   242.04 MiB
llm_load_tensors:        CPU buffer size =    67.43 MiB
.................................................
llama_new_context_with_model: n_ctx      = 8192
llama_new_context_with_model: n_batch    = 2048
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base  = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M1
ggml_metal_init: picking default device: Apple M1
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name:   Apple M1
ggml_metal_init: GPU family: MTLGPUFamilyApple7  (1007)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3  (5001)
ggml_metal_init: simdgroup reduction support   = true
ggml_metal_init: simdgroup matrix mul. support = true
ggml_metal_init: hasUnifiedMemory              = true
ggml_metal_init: recommendedMaxWorkingSetSize  = 11453.25 MB
llama_kv_cache_init:      Metal KV buffer size =   192.00 MiB
llama_new_context_with_model: KV self size  =  192.00 MiB, K (f16):   96.00 MiB, V (f16):   96.00 MiB
llama_new_context_with_model:        CPU  output buffer size =     0.47 MiB
llama_new_context_with_model:      Metal compute buffer size =   241.75 MiB
llama_new_context_with_model:        CPU compute buffer size =    18.01 MiB
llama_new_context_with_model: graph nodes  = 824
llama_new_context_with_model: graph splits = 2
llama_init_from_gpt_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
main: llama threadpool init, n_threads = 4

system_info: n_threads = 4 (n_threads_batch = 4) / 8 | AVX = 0 | AVX_VNNI = 0 | AVX2 = 0 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | AVX512_BF16 = 0 | FMA = 0 | NEON = 1 | SVE = 0 | ARM_FMA = 1 | F16C = 0 | FP16_VA = 1 | RISCV_VECT = 0 | WASM_SIMD = 0 | BLAS = 1 | SSE3 = 0 | SSSE3 = 0 | VSX = 0 | MATMUL_INT8 = 0 | LLAMAFILE = 1 | 

sampler seed: 1822835924
sampler params: 
	repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
	top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
	mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampler chain: logits -> logit-bias -> penalties -> top-k -> tail-free -> typical -> top-p -> min-p -> temp-ext -> softmax -> dist 
generate: n_ctx = 8192, n_batch = 2048, n_predict = -1, n_keep = 1

 北京有什么好玩的地方吗
 北京旅游攻略北京有哪些好玩的地方?
北京有什么好玩的地方吗
 北京旅游攻略1、颐和园(北京颐和园):中国四大皇家园林之一,位于北京西郊,以水景和园林艺术闻名于世,被誉为“皇家园林博物馆”。颐和园以其碧水、碧草、碧花、碧石、碧泉、碧松、碧池、碧莲、碧云、碧林等自然景观而闻名于世,是中华民族文化的象征。
颐和园位于北京西郊,以水景和园林艺术闻名于世,被誉为“皇家园林博物馆”。颐和园以其碧水、碧草、碧花、碧石、碧泉、碧莲、碧云、碧林等自然景观而闻名于世,是中华民族文化的象征。
颐和园是中国八大名胜之一。颐和园位于北京西山南麓,东临昆明湖,西濒昆明湖,北依九龙山。它由内湖、外湖、山门、东配殿、西配殿、玉祥殿等部分构成。整个园呈南北走向,园内群山环绕,水景丰富。
颐和园的门票为20元。颐和园有1个入口,游客可乘坐园中索道游览。门票:1.门票:门票包括门票和景区的游览车,游览车收费在10元--60元之间,景区内游览车收费标准在20-100元之间。2.景区的游览车:游览车费用在20元--100元之间。
颐和园的门票包括门票和景区的游览车,游览车收费在10元-60元之间,景区内游览车收费标准在20-100元之间。颐和园有1个入口,游客可乘坐园中索道游览。门票:1.门票:门票包括门票和景区的游览车,游览车收费在10元--60元之间,景区内游览车收费标准在20-100元之间。
颐和园的门票包括门票和景区的游览车,游览车费用在20元--100元之间。
颐和园的门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园有1个入口,游客可乘坐园中索道游览。门票:1.门票:门票包括门票和景区的游览车,游览车费用在20元-100元之间,景区内游览车收费标准在20-100元之间。2.景区的游览车:游览车费用在20元-100元之间。
颐和园门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园的门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园有1个入口,游客可乘坐园中索道游览。
门票:1.门票:门票包括门票和景区的游览车,游览车费用在20元-100元之间,景区内游览车收费标准在20-100元之间。2.景区的游览车:游览车费用在20元-100元之间。
颐和园门票包括门票和景区的游览车,游览车费用在20元-100元之间。
颐和园有1个入口,游客可乘坐园中索道游览。门票:1.门票:门票包括门票和景区的游览车,游览车费用在20元-100元之间,景区内游览车收费标准在20-100元之间。2.景区的游览车:游览车费用在20元-100元之间。 [end of text]


llama_perf_sampler_print:    sampling time =     174.82 ms /   888 runs   (    0.20 ms per token,  5079.63 tokens per second)
llama_perf_context_print:        load time =     213.10 ms
llama_perf_context_print: prompt eval time =      23.00 ms /     5 tokens (    4.60 ms per token,   217.35 tokens per second)
llama_perf_context_print:        eval time =    8911.11 ms /   882 runs   (   10.10 ms per token,    98.98 tokens per second)
llama_perf_context_print:       total time =    9372.60 ms /   887 tokens

 三、交叉编译

大模型版本需要在手机上运行时,需要进行交叉编译。编译安卓版本为例。

3.1 安卓命令行版本

项目docs/android.md 有编译说明文档。

主要的编译步骤:

$ mkdir build-android
$ cd build-android
$ export NDK=<your_ndk_directory>
$ cmake -DCMAKE_INSTALL_PREFIX=./out -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS="-fPIC" ..
$ cmake -DCMAKE_TOOLCHAIN_FILE=$NDK/build/cmake/android.toolchain.cmake -DANDROID_ABI=arm64-v8a -DANDROID_PLATFORM=android-23 -DCMAKE_C_FLAGS="-march=armv8.4a+dotprod -fPIC" ..
$ make

export NDK=<NDK目录>

设置环境变量NDK,指定NDK的目录。

cmake设置cmake相关参数。

以下对cmake的参数说明。

参数取值说明
CMAKE_TOOLCHAIN_FILENDK的toolchain的cmake文件NDK中cmake 
ANDROID_ABI指令集类型,arm64-v8a:arm64位版本指定的指令集类型,2019年以后,推荐使用ARM64版本
ANDROID_PLATFORM安卓平台版本安卓平台版本。android-23,目标平台为安卓23
CMAKE_C_FLAGS设置了 C 编译器的标志,其中 -march=armv8.4a+dotprod 指定了生成的代码将针对 ARMv8.4-A 架构以及 dot product 指令集进行优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885309.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Teams集成-会议侧边栏应用开发-会议转写

Teams应用开发&#xff0c;主要是权限比较麻烦&#xff0c;大量阅读和实践&#xff0c;摸索了几周&#xff0c;才搞明白。现将经验总结如下&#xff1a; 一、目标&#xff1a;开发一个Teams会议的侧边栏应用&#xff0c;实现会议的实时转写。 二、前提&#xff1a; 1&#x…

读代码UNET

这个后面这个大小怎么算的&#xff0c;这参数怎么填&#xff0c;怎么来的&#xff1f; 这是怎么看怎么算的&#xff1f; 这些参数设置怎么设置&#xff1f;卷积多大&#xff0c;有什么讲究&#xff1f;

linux 系统磁盘空间查看与清理

正常清理步骤 首先查看文件和目录的使用空间&#xff0c;系统/根目录下的文件夹一般情况不会占用大的磁盘空间&#xff0c;因此可主要查看您创建的目录或文件等 文件大小 使用ls -alh命令来查看&#xff0c;比如下方的.bashrc、.profile文件的大小。但是看到的文件夹大小仅仅…

全面解说OpenAI o1三部曲:下篇-乞丐版o1-mini

简介 小伙伴们好&#xff0c;我是微信公众号《小窗幽记机器学习》的小编&#xff1a;卖海参的小女孩。OpenAI 发布的o1 是一个系列模型。除了o1-preview&#xff0c;官方还一并发布了一个 mini 版&#xff1a;OpenAI o1-mini。o1-mini是面向开发者&#xff0c;兼顾成本和效益。…

Solidity智能合约中的异常处理(error、require 和 assert)

Solidity 中的三种抛出异常方法&#xff1a;error、require 和 assert 在 Solidity 开发中&#xff0c;异常处理是确保智能合约安全性和正确性的关键步骤。Solidity 提供了三种主要方法来抛出异常&#xff1a;error、require 和 assert。本文将详细介绍这三种方法的用途、实现方…

算法:按既定顺序创建目标数组

力扣1389 提示&#xff1a; 1 < nums.length, index.length < 100nums.length index.length0 < nums[i] < 1000 < index[i] < i 题解&#xff1a; class Solution {public int[] createTargetArray(int[] nums, int[] index) {int[] target new int[num…

有关若依菜单管理的改造

导言&#xff1a; 搞了个后端对接若依前端&#xff0c;对接菜单管理时候懵懵的就搞完了&#xff0c;也是搞了很久。记一下逻辑和要注意的东西&#xff0c;以后做想似的能有个改造思路。 逻辑&#xff1a; 主要是要把后端传过的数组列表做成类似 这样的&#xff0c;所以要转格式…

心理咨询行业为何要有自己的知识付费小程序平台 心理咨询小程序搭建 集师saas知识付费小程序平台搭建

在快节奏的现代生活中&#xff0c;心理健康问题日益凸显&#xff0c;心理咨询行业迎来了前所未有的发展机遇。然而&#xff0c;传统咨询模式受限于地域、时间等因素&#xff0c;难以满足日益增长的多元化需求。在此背景下&#xff0c;搭建自己的知识付费小程序&#xff0c;成为…

【MWORKS专业工具箱系列教程】控制系列工具箱第四期:时域分析

本工具箱教程以控制系统模型创建、分析与设计流程为主线&#xff0c;通过大量示例介绍MWORKS控制系统工具箱的功能和具体使用。共计10篇文章&#xff0c;上一篇主要介绍了控制系统连接与化简。 同元软控&#xff1a;【MWORKS专业工具箱系列教程】控制系 列工具箱第三期&#x…

IT基础监控范围和对象

监控易作为一款由美信时代独立自主研发的分布式一体化集中监控平台&#xff0c;其监控范围极为广泛&#xff0c;几乎涵盖了所有主流的IT基础设施以及相关的设备和系统。以下是对监控易监控范围的详细介绍&#xff1a; 一、IT基础资源监控 服务器硬件监控&#xff1a;监控易支…

【宝藏篇】加密软件有哪些?10款好用的加密软件推荐!

小明&#xff1a;嘿&#xff0c;小华&#xff0c;你知道有哪些好用的加密软件吗&#xff1f;我最近需要保护一些敏感数据。 小华&#xff1a;当然&#xff0c;小明&#xff01;现在市场上有很多优秀的加密软件&#xff0c;可以帮助你保护数据安全。我正好有10款宝藏级的加密软件…

Tableau|一入门

一 什么是BI工具 BI 工具即商业智能&#xff08;Business Intelligence&#xff09;工具&#xff0c;是一种用于收集、整理、分析和展示企业数据的软件系统&#xff0c;其主要目的是帮助企业用户更好地理解和利用数据&#xff0c;以支持决策制定。 主要功能&#xff1a; 1.数据…

【数据结构中的哈希】

泛黄的春联还残留在墙上.......................................................................................................... 文章目录 前言 一、【哈希结构的介绍】 1.1【哈希结构的概念】 1.2【哈希冲突】 1.3【哈希函数的设计】 1.4【应对哈希冲突的办法】 一、…

工厂模式和抽象工厂模式的实验报告

1. 实验结果&#xff1a; 记录并附上不同模型对象&#xff08;例如&#xff1a;士兵、机器人、骑士&#xff09;的展示效果截图。 2. 性能分析&#xff1a; 记录并比较抽象工厂模式与直接实例化的性能测试结果&#xff0c;分析它们在不同数量级对象创建时的开销与效益。 2.1…

集运公司如何怎么利用系统开展营销活动?

在当前集运市场激烈竞争的背景下&#xff0c;企业如何通过有效的营销策略脱颖而出&#xff0c;成为行业佼佼者&#xff1f;易境通集运系统以其强大的营销功能和工具&#xff0c;为集运企业提供了全新的营销解决方案。以下是如何利用该系统开展营销活动的具体策略。 1.积分卡券&…

Jupyter的使用分享

文章目录 碎碎念安装方法1.安装Anaconda方法2.通过库的安装方式 启动使用教程1.指定目录打开2.启动后的简单使用 小结 碎碎念 前情提示 之前与许多小伙伴交流的时候&#xff0c;发现大家对于pycharm更容易上手&#xff08;可能是比较好设置中文的原因&#xff09;&#xff0c;在…

MySQL扩展

一、慢查询&#xff08;慢日志&#xff09; 默认关闭的 定位慢SQL 简单&#xff1a;show profile&#xff0c;启用时会对服务器的性能产生额外的负担 -- 启用性能监控 mysql> set profiling1;-- 执行SQL mysql> SELECT * from member-- 性能分析 mysql> show p…

基于卷积神经网络的体育运动项目分类识别系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 随着计算机视觉和深度学习技术的快速发展&#xff0c;利用先进的图像处理技术对体育运动进行智能分类与识别已成为研究热点。传统的运动分析方法通常依赖于人工观察和记录&#xff0c;耗时耗力且容…

AndroidLogger插件使用技巧

它是一个Notepad插件&#xff0c;由于未上架Notepad的插件市场&#xff0c;因此需要独立下载并解压到 Notepad 安装目录下 plugin 里面即可。已更新到 SourceForge&#xff0c;您可以到那里获取最新的包&#xff0c;目前还在持续升级。 https://sourceforge.net/projects/andro…

网站建设中,常用的后台技术有哪些,他们分别擅长做什么网站平台

PHP、Python、JavaScript、Ruby、Java和.NET各自适用于不同类型的网站平台。以下是对这些编程语言适用场景的具体介绍&#xff1a; PHP Web开发&#xff1a;PHP是一种广泛使用的开源服务器端脚本语言&#xff0c;特别适合Web开发。全球有超过80%的网站使用PHP作为服务器端编程语…