如何理解矩阵的复数特征值和特征向量?

实数特征值的直观含义非常好理解,它就是在对应的特征向量方向上的纯拉伸/压缩。

而复数特征值,我们可以把它放在复数域中理解。但是这里给出一个不那么简洁、但是更加直观的理解方式:把它放在实空间中。那么复数特征值表现的就是旋转+等比放大/缩小。我们不妨从一个二维空间说起:

对二维空间的一个线性变换:

A=(a11a12a12a22)

假设它有两个复数特征值:

λ=a±bi=r(cos⁡θ±isin⁡θ)

以及相对应的两个特征向量:

v=(x1x2)±i(y1y2)

也就是说,虽然每个特征值都有一个实部和一个虚部(两个自由度),但是由于特征值必然是共轭成对出现的,那么两个特征值仍然只对应着一个实部和一个虚部(两个自由度)。对特征向量而言同理。

也就是说,一对复特征值给我们两个自由度,一个模,一个幅角。一对特征向量也给我们两个向量,一个是实部向量,一个是虚部向量。

于是乎,如下两个向量:

,(x1x2),   (y1y2)

就可以构成一个二维空间的一组基。

那么可以证明,当我们选取这两个向量为基时,原线性变换的表述就变成了:

B=r(cos⁡(θ)−sin⁡(θ)sin⁡(θ)cos⁡(θ))

这是一个旋转矩阵乘以一个数字。也就是说,在特征向量的实部和虚部构成的基底下,这个线性变换就是一个纯粹的旋转 θ 外加一个等比放大倍数 r 。

比如说,我们令(简化起见,选取行列式为1的矩阵)

A=(0.7−0.50.61)

这个矩阵把下图中蓝色的空间变换成红色的空间:

我们可以按照上述的原则进行坐标变换,变换的结果就是这样的:

我们可以看到,经过坐标变换后,蓝色空间变为红色空间就是一个纯粹的旋转过程了。这里,复数特征值和特征向量的含义就是:

  • 特征值的模代表着等比放大的倍数
  • 特征值的幅角代表着旋转的角度
  • 特征向量的实部向量和虚部向量代表着实现上述变换的一组基

我们可以很容易推广到三维空间的变换,对一个三维矩阵:

A=(a11a12a13a21a22a23a31a32a33)

我们假设这个矩阵有三个不重叠的特征值,其中两个为共轭复数:

λ1/2=a±bi,λ3=c

那么,可以证明这个矩阵和下面这样一个分块矩阵相似,也就是说,我们可以通过选取某一个坐标系,把这个线性变换写成如下形式:

B=(ab0−ba000c)

我们令:

r=a2+b2, a=rcos⁡(θ), b=rsin⁡(θ)

那么,可以看到:

B=(cos⁡(θ)−sin⁡(θ)0sin⁡(θ)cos⁡(θ)0001)(r000r000c)

我们可以看到,这个变换就可以被分解成两个单独的变换一个是纯旋转:在x-y平面中的旋转,另一个纯伸缩:在x-y平面上的均匀拉伸r倍,以及在z方向上单向拉伸c倍。

实现这种变换的基就是复特征向量的实部向量、虚部向量、以及实特征值的特征向量。具体讲,假定矩阵A的特征向量为:

v1/2=(x1x2x3)±i(y1y2y3), v3=(z1z2z3)

那么,这三个基底就是:

(x1x2x3), (y1y2y3), (z1z2z3)

也就是说,当我们拿到任意一个三维矩阵(注意,这里不考虑特征值重根的情况):

  1. 我们可以把这个矩阵变成一个纯旋转和一个纯伸缩的两个变换的组合。
  2. 纯旋转的角度就是复数特征值的幅角,旋转发生在复特征向量的实部向量和虚部向量所构成的平面中。
  3. 纯伸缩的倍数在各个方向上分别是复特征向量的模、以及实特征向量本身。

如果我们继续推广到高维空间,一个线形变换可以通过上述基底的选择表示成:

{(cos⁡θ1−sin⁡θ1sinθ1cos⁡θ1)0⋯001⋯0⋮⋮⋱⋮00⋯(cos⁡θi−sin⁡θisinθicos⁡θi)}{r100⋯000r10⋯0000λ3⋯00⋮⋮⋮⋱⋮⋮00⋯ri000⋯0ri}

也是纯旋转+纯伸缩的两种变换的组合。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885210.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

自动驾驶汽车横向控制方法研究综述

【摘要】 为实现精确、稳定的横向控制,提高车辆自主行驶的安全性和保障乘坐舒适性,综述了近年来自动驾驶汽车横向控制方法的最新进展,包括经典控制方法和基于深度学习的方法,讨论了各类方法的性能特点及在应用中的优缺点&#xff…

《深度学习》OpenCV 指纹验证、识别

目录 一、指纹验证 1、什么是指纹验证 2、步骤 1)图像采集 2)图像预处理 3)特征提取 4)特征匹配 5)相似度比较 6)结果输出 二、案例实现 1、完整代码 2、实现结果 调试模式: 三、…

SpringBoot(Java)实现MQTT连接(本地Mosquitto)通讯调试

1.工作及使用背景 工作中需要跟收集各种硬件或传感器数据用于Web展示及统计计算分析,如电表、流量计、泵、控制器等物联网设备。 目前的思路及解决策略是使用力控或者杰控等组态软件实现数据的转储(也会涉及收费问题),通过组态软件…

Oracle数据恢复—异常断电导致Oracle数据库报错的数据恢复案例

Oracle数据库故障: 机房异常断电后,Oracle数据库启库报错:“system01.dbf需要更多的恢复来保持一致性,数据库无法打开”。数据库没有备份,归档日志不连续。用户方提供了Oracle数据库的在线文件,需要恢复zxf…

仕考网:事业单位考试选岗小技巧!

事业单位的考试选岗阶段,应该综合考量多个方面,确保选择出更合适的岗位,仕考网为大家分享以下技巧: 1. 岗位性质及工作内容 岗位性质:深入了解岗位是管理类、专业技术类还是工勤技能类,以及相应的职责和要求。 工作…

解决 Macos下 Orbstack docker网络问题

两种解决方法,第一种开代理 参考 —— 但是我这一种没成功,第二种方法是换镜像源 { "registry-mirrors": ["http://hub-mirror.c.163.com","https://docker.mirrors.ustc.edu.cn","https://mirrors.tencent.com&q…

openKylin--安装 .net6.0

编辑profile文件 cd .. //切换到根目录 cd /etc //切换到etc目录 vim profile //b编辑profile文件 1. 按→键移动到文件末尾 2. 按Insert键进入编辑模式 3. 按Enter另起一行开始编辑 export DOTNET_ROOT/home/dotnetexport PATH$PATH:/home/dotnet 可以通过右键--粘贴 的…

【Android 14源码分析】WMS-窗口显示-第二步:relayoutWindow -1

忽然有一天,我想要做一件事:去代码中去验证那些曾经被“灌输”的理论。                                                                                  – 服装…

YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

一、本文介绍 本文记录的是改进YOLOv11的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样…

Docker版MKVtoolnix的安装及中文显示

本文是应网友 kkkhi 要求折腾的,只研究了 MKVtoolnix 的安装及中文显示,未涉及到软件的使用; 什么是 MKVtoolnix ? MKVToolnix 是一款功能强大的多媒体处理工具,用于在 Linux、其他 Unix 系统和 Windows 上创建、修改和…

SpringBoot--为什么Controller是串行的?怎样才能并行?

原文网址:SpringBoot--为什么Controller是串行的?怎样才能并行?-CSDN博客 简介 本文介绍SpringBoot为什么Controller是串行的?在什么场景下才能并行执行? 大家都知道,SpringBoot的Controller按理是并行执…

1.2.1 HuggingFists安装说明-Linux安装

Linux版安装说明 下载地址 【GitHub】https://github.com/Datayoo/HuggingFists 【百度网盘】https://pan.baidu.com/s/12-qzxARjzRjYFvF8ddUJQQ?pwd2024 安装说明 环境要求 操作系统:CentOS7 硬件环境:至少4核8G,系统使用Containerd…

IIS HTTPS 网页可能暂时无法连接,或者它已永久性地移动到了新网址 ERR_HTTP2_INADEQUATE_TRANSPORT_SECURITY

问题描述:站点突然无法访问,经排查发现,HTTP协议的网址可以继续访问,HTTPS的网址不可以访问。 问题分析:在Windows更新和滚动之后,由于 HTTP/2,当站点启动了 HTTP/2 连接,会出现一个…

通过PHP获取商品详情

在电子商务的浪潮中,数据的重要性不言而喻。商品详情信息对于电商运营者来说尤为宝贵。PHP,作为一种广泛应用的服务器端脚本语言,为我们提供了获取商品详情的便捷途径。 了解API接口文档 开放平台提供了详细的API接口文档。你需要熟悉商品详…

【JavaEE初阶】网络原理

欢迎关注个人主页:逸狼 创造不易,可以点点赞吗~ 如有错误,欢迎指出~ 目录 ⽹络互连 IP地址 端口号 协议 协议分层 优势 TCP/IP 五层网络模型 数据在网络通信中的整体流程 封装和分用 封装 分用 ⽹络互连 随着时代的发展,越来越需…

若依框架使用教程

1、若依介绍 1.1什么是低代码开发平台&#xff1f; 低代码诞生的目的是将可<font style"color:rgb(51, 51, 51);background-color:rgb(248, 248, 248);">重复性的编程</font>工作通过<font style"color:rgb(51, 51, 51);background-color:rgb(2…

.Net 6.0 监听Windows网络状态切换

上次发了一个文章获取windows网络状态&#xff0c;判断是否可以访问互联网。传送门&#xff1a;获取本机网络状态 这次我们监听网络状态切换&#xff0c;具体代码如下&#xff1a; public class WindowsNetworkHelper {private static Action<bool>? _NetworkStatusCh…

js列表数据时间排序和取唯一值

1.取唯一值[...new Set(array)] const array [1, 2, 3, 2, 4, 5, 3, 5]; // 使用Set去除重复元素 const uniarray [...new Set(array)]; console.log(uniarray); // 输出: [1, 2, 3, 4, 5] 2.排序 var u [1,3,2,5,4]; var uu u.sort(); console.log(uu); var u [1,3…

求组合数专题

求组合数 Ⅰ&#xff08;递推公式&#xff09; 思路 递推法预处理 利用公式 复杂度 直接查询 单次查询复杂度 代码 #include <bits/stdc.h> using namespace std; const int N 2010; const int mod 1e97; int c[N][N]; int get_c(int a, int b) {c[0][0] 1;for(i…

9700万个新岗位涌现,AI失业焦虑背后:超千万人找到了新工作

随着技术的飞速进步&#xff0c;全球就业市场正经历着翻天覆地的变化。 《2023年未来就业报告》预计&#xff0c;未来五年将新增近7000万个工作岗位&#xff0c;同时淘汰8300万个旧岗位。 在中国&#xff0c;城市如武汉和东莞正成为新就业机会的热土&#xff0c;无人驾驶、人…