YOLOv11改进策略【损失函数篇】| Slide Loss,解决简单样本和困难样本之间的不平衡问题

一、本文介绍

本文记录的是改进YOLOv11的损失函数,将其替换成Slide Loss,并详细说明了优化原因,注意事项等。Slide Loss函数可以有效地解决样本不平衡问题,为困难样本赋予更高的权重,使模型在训练过程中更加关注困难样本。若是在自己的数据集中发现容易样本的数量非常大,而困难样本相对稀疏,可尝试使用Slide Loss来提高模型在处理复杂样本时的性能。


文章目录

  • 一、本文介绍
  • 二、Slide Loss原理
    • 2.1 IoU含义
    • 2.2 原理
    • 2.2 优势
  • 三、Slide Loss的实现代码
  • 四、添加步骤
    • 4.1 修改ultralytics/utils/loss.py
    • 4.2 Slide Loss的调用


二、Slide Loss原理

2.1 IoU含义

IoU(P, G) = area(P∩G) / area(G),其中P是预测框,G是真实框(ground truth)。IoU的值在[0, 1]之间。

IoU是预测框与真实框的交集面积与并集面积之比。它用于衡量预测框与真实框的重合程度。

2.2 原理

  1. 样本分类依据
    • Slide Loss函数基于预测框和真实框的IoU大小来区分容易样本和困难样本。
    • 为了减少超参数,将所有边界框的IoU值的平均值作为阈值µ,小于µ的被视为负样本,大于µ的为正样本。
  2. 强调边界样本
    • 但处于边界附近的样本由于分类不明确,往往会遭受较大损失。为了解决这个问题,希望模型能够学习优化这些样本,并更充分地利用这些样本训练网络。
    • 首先将样本通过参数µ分为正样本和负样本,然后通过一个加权函数Slide来强调处于边界的样本。
    • Slide加权函数表达式为:
      f ( x ) = { 1 x ≤ μ − 0.1 e 1 − μ μ < x < μ − 0.1 e 1 − x x ≥ u f(x)= \begin{cases} 1&x\leq\mu - 0.1\\ e^{1-\mu}&\mu < x <\mu - 0.1\\ e^{1 - x}&x\geq u \end{cases} f(x)= 1e1μe1xxμ0.1μ<x<μ0.1xu

在这里插入图片描述

2.2 优势

  1. 解决样本不平衡问题
    • 在大多数情况下,容易样本的数量非常大,而困难样本相对稀疏,Slide Loss函数可以有效地解决样本不平衡问题,使模型在训练过程中更加关注困难样本。
  2. 自适应学习阈值
    • 通过自动计算所有边界框的IoU值的平均值作为阈值µ,减少了人为设置超参数的难度,提高了模型的适应性。
  3. 提高模型性能
    • 根据论文实验结果,Slide函数在中等难度和困难子集上提高了模型的性能,使模型能够更好地学习困难样本的特征,提高了模型的泛化能力。

论文:https://arxiv.org/pdf/2208.02019
源码:https://github.com/Krasjet-Yu/YOLO-FaceV2/blob/d9c8f24d5dba392ef9d6b350a7c50b850051b32b/utils/loss.py#L16


三、Slide Loss的实现代码

Slide Loss的实现代码如下:

import math
class SlideLoss(nn.Module):
    def __init__(self, loss_fcn):
        super(SlideLoss, self).__init__()
        self.loss_fcn = loss_fcn
        self.reduction = loss_fcn.reduction
        self.loss_fcn.reduction = 'none'  # required to apply SL to each element
 
    def forward(self, pred, true, auto_iou=0.5):
        loss = self.loss_fcn(pred, true)
        if auto_iou < 0.2:
            auto_iou = 0.2
        b1 = true <= auto_iou - 0.1
        a1 = 1.0
        b2 = (true > (auto_iou - 0.1)) & (true < auto_iou)
        a2 = math.exp(1.0 - auto_iou)
        b3 = true >= auto_iou
        a3 = torch.exp(-(true - 1.0))
        modulating_weight = a1 * b1 + a2 * b2 + a3 * b3
        loss *= modulating_weight
        if self.reduction == 'mean':
            return loss.mean()
        elif self.reduction == 'sum':
            return loss.sum()
        else:  # 'none'
            return loss

四、添加步骤

4.1 修改ultralytics/utils/loss.py

此处需要修改的文件是ultralytics/utils/loss.py

loss.py中定义了模型的损失函数和计算方法,我们想要加入新的损失函数就只需要将代码放到这个文件内即可。

Slide Loss添加后如下:

在这里插入图片描述

4.2 Slide Loss的调用

loss.py中的v8DetectionLoss函数中添加如下代码,使模型调用此Slide Loss函数

self.bce = SlideLoss(nn.BCEWithLogitsLoss(reduction="none"))

在这里插入图片描述

此时再次训练模型便会使用Slide Loss计算模型的损失函数。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/885195.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Docker版MKVtoolnix的安装及中文显示

本文是应网友 kkkhi 要求折腾的&#xff0c;只研究了 MKVtoolnix 的安装及中文显示&#xff0c;未涉及到软件的使用&#xff1b; 什么是 MKVtoolnix &#xff1f; MKVToolnix 是一款功能强大的多媒体处理工具&#xff0c;用于在 Linux、其他 Unix 系统和 Windows 上创建、修改和…

SpringBoot--为什么Controller是串行的?怎样才能并行?

原文网址&#xff1a;SpringBoot--为什么Controller是串行的&#xff1f;怎样才能并行&#xff1f;-CSDN博客 简介 本文介绍SpringBoot为什么Controller是串行的&#xff1f;在什么场景下才能并行执行&#xff1f; 大家都知道&#xff0c;SpringBoot的Controller按理是并行执…

1.2.1 HuggingFists安装说明-Linux安装

Linux版安装说明 下载地址 【GitHub】https://github.com/Datayoo/HuggingFists 【百度网盘】https://pan.baidu.com/s/12-qzxARjzRjYFvF8ddUJQQ?pwd2024 安装说明 环境要求 操作系统&#xff1a;CentOS7 硬件环境&#xff1a;至少4核8G&#xff0c;系统使用Containerd…

IIS HTTPS 网页可能暂时无法连接,或者它已永久性地移动到了新网址 ERR_HTTP2_INADEQUATE_TRANSPORT_SECURITY

问题描述&#xff1a;站点突然无法访问&#xff0c;经排查发现&#xff0c;HTTP协议的网址可以继续访问&#xff0c;HTTPS的网址不可以访问。 问题分析&#xff1a;在Windows更新和滚动之后&#xff0c;由于 HTTP/2&#xff0c;当站点启动了 HTTP/2 连接&#xff0c;会出现一个…

通过PHP获取商品详情

在电子商务的浪潮中&#xff0c;数据的重要性不言而喻。商品详情信息对于电商运营者来说尤为宝贵。PHP&#xff0c;作为一种广泛应用的服务器端脚本语言&#xff0c;为我们提供了获取商品详情的便捷途径。 了解API接口文档 开放平台提供了详细的API接口文档。你需要熟悉商品详…

【JavaEE初阶】网络原理

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 目录 ⽹络互连 IP地址 端口号 协议 协议分层 优势 TCP/IP 五层网络模型 数据在网络通信中的整体流程 封装和分用 封装 分用 ⽹络互连 随着时代的发展&#xff0c;越来越需…

若依框架使用教程

1、若依介绍 1.1什么是低代码开发平台&#xff1f; 低代码诞生的目的是将可<font style"color:rgb(51, 51, 51);background-color:rgb(248, 248, 248);">重复性的编程</font>工作通过<font style"color:rgb(51, 51, 51);background-color:rgb(2…

.Net 6.0 监听Windows网络状态切换

上次发了一个文章获取windows网络状态&#xff0c;判断是否可以访问互联网。传送门&#xff1a;获取本机网络状态 这次我们监听网络状态切换&#xff0c;具体代码如下&#xff1a; public class WindowsNetworkHelper {private static Action<bool>? _NetworkStatusCh…

js列表数据时间排序和取唯一值

1.取唯一值[...new Set(array)] const array [1, 2, 3, 2, 4, 5, 3, 5]; // 使用Set去除重复元素 const uniarray [...new Set(array)]; console.log(uniarray); // 输出: [1, 2, 3, 4, 5] 2.排序 var u [1,3,2,5,4]; var uu u.sort(); console.log(uu); var u [1,3…

求组合数专题

求组合数 Ⅰ&#xff08;递推公式&#xff09; 思路 递推法预处理 利用公式 复杂度 直接查询 单次查询复杂度 代码 #include <bits/stdc.h> using namespace std; const int N 2010; const int mod 1e97; int c[N][N]; int get_c(int a, int b) {c[0][0] 1;for(i…

9700万个新岗位涌现,AI失业焦虑背后:超千万人找到了新工作

随着技术的飞速进步&#xff0c;全球就业市场正经历着翻天覆地的变化。 《2023年未来就业报告》预计&#xff0c;未来五年将新增近7000万个工作岗位&#xff0c;同时淘汰8300万个旧岗位。 在中国&#xff0c;城市如武汉和东莞正成为新就业机会的热土&#xff0c;无人驾驶、人…

C++ | Leetcode C++题解之第433题最小基因变化

题目&#xff1a; 题解&#xff1a; class Solution { public:int minMutation(string start, string end, vector<string>& bank) {int m start.size();int n bank.size();vector<vector<int>> adj(n);int endIndex -1;for (int i 0; i < n; i)…

数据结构2——单链表

在数据结构1——顺序表&#xff08;C语言版&#xff09;中&#xff0c;我们已经了解了顺序表的使用和实现&#xff0c;总结一下顺序表的优点&#xff1a; ①尾插尾删效率足够快&#xff1b; ②下标的随机访问和修改也足够方便。 可除此之外顺序表也确实存在着不足&#xff1a; …

随手记:牛回速归

上周-国庆前&#xff1a;牛回速归 国庆&#xff1a;小心被套住 国庆后&#xff1a;一片迷茫 总结&#xff1a;要是上周到国庆前的基本都能捞到&#xff0c;后面情况不好说 后续持续更新

word中的表格全部设置宽度100%

1、背景 我们用工具将数据库或其他的数据导出成word时&#xff0c;表格有的会大于100%&#xff0c;超过了边界。word没有提供全局修改的方法。如果我们想改成100%。 一种方式是通过宏&#xff0c;全局改。一种是手动改。 2、宏修改 如果表格多&#xff0c;可以通过这种方式。…

面试中考察栈和队列的经典算法题

&#x1f49d;&#x1f49d;&#x1f49d;如果你对顺序表的概念与理解还存在疑惑&#xff0c;欢迎观看我之前的作品&#x1f449;【栈和列队详解】 上篇文章&#x1f449; 【面试中顺序表常考的十大题目解析】 目录 &#x1f4af;前言 &#x1f4af;栈相关题目 ⭐有效的括号…

双十一好物清单有哪些值得入手?双11好物种草宝藏清单分享

随着双十一购物狂欢节的临近&#xff0c;各种优惠和折扣让人目不暇接&#xff0c;在这个充满诱惑的时刻&#xff0c;如何挑选出真正值得入手的好物&#xff0c;成为了许多消费者的难题&#xff0c;为此&#xff0c;我精心整理了一份双十一好物清单&#xff0c;为大家提供一些实…

Linux 网络配置 (深入理解)

前言 前期我比较迷惑Ubuntu 的网络配置。 我接触比较多的 Linux 发行版都是 Ubuntu &#xff0c;我按照网上的一些教程配置网络发现&#xff0c;没有相关网络配置文件夹。然后我发现不是我的问题而是不同版本的配置方式和工具是不一样的。然后有些配置已经弃用了。 常见的网络…

计算机网络--TCP、UDP抓包分析实验

计算机网络实验 目录 实验目的 实验环境 实验原理 1、UDP协议 2、TCP协议 实验具体步骤 实验目的 1、掌握使用wireshark工具对UDP协议进行抓包分析的方法&#xff0c;掌握UDP协议的报文格式&#xff0c;掌握UDP协议校验和的计算方法&#xff0c;理解UDP协议的优缺点&am…

手把手教你使用YOLOv11训练自己数据集(含环境搭建 、数据集查找、模型训练)

一、前言 本文内含YOLOv11网络结构图 训练教程 推理教程 数据集获取等有关YOLOv11的内容&#xff01; 官方代码地址&#xff1a;https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11 二、整体网络结构图 三、环境搭建 项目环境如下&#xf…