pytorch张量高级索引介绍

PyTorch 中,张量索引操作可以使用高级索引(advanced indexing),其中索引可以是另一个张量。使用这种索引方式时,返回值的维度由索引张量的形状和原始张量的形状共同决定。以下是具体的规则和解释:

1. 基本概念

假设我们有一个张量 x 和索引张量 indices,我们通过 x[indices] 进行高级索引操作。

规则:

  • 索引张量的形状将决定返回值的形状。
  • 返回值的维度由索引张量的维度代替索引位置后的张量维度。

2. 示例讲解

示例 1:一维索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([0, 1])
result = x[indices]
  • x 的形状是 (2, 3)
  • indices 是一维张量,形状是 (2,)
  • 索引 x[indices] 的结果:
    • 取出 x 的第 0 行和第 1 行。
    • 返回值的形状是 (2, 3)

示例 2:多维索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
indices = torch.tensor([[0, 1], [1, 0]])
result = x[indices]

print(f"x.shape:{x.shape}")
print(f"index.shape:{index.shape}")
print(f"result.shape:{result.shape}")
print(result)

输出:

x.shape:torch.Size([2, 3])
index.shape:torch.Size([2, 2])
result.shape:torch.Size([2, 2, 3])
tensor([[[10, 20, 30],
         [40, 50, 60]],

        [[40, 50, 60],
         [10, 20, 30]]])

示例 3:多维组合索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([0, 1])
cols = torch.tensor([1, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 和 cols 都是一维张量,形状为 (2,)
  • 索引 x[rows, cols]
    • 分别取出 x[0, 1] 和 x[1, 2]
    • 返回值是 (20, 60),形状为 (2,)

示例 4:广播索引

x = torch.tensor([[10, 20, 30], [40, 50, 60]])
rows = torch.tensor([[0], [1]])
cols = torch.tensor([0, 2])
result = x[rows, cols]
  • x 的形状是 (2, 3)
  • rows 的形状是 (2, 1)cols 的形状是 (2,)
  • 索引 x[rows, cols]
    • rows 和 cols 会广播成 (2, 2)
    • 返回值的形状是 (2, 2)

示例 5:更复杂的张量索引操作

AF3 AtomAttentionEncoder类的init_pair_repr方法解读-CSDN博客中的  张量的高级索引  

总结:

  • 索引张量的形状直接决定了返回张量的形状。
  • 当多个索引张量时,它们会广播以匹配维度,然后返回广播后形状的张量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/949700.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

开源数据集成平台白皮书重磅发布《Apache SeaTunnel 2024用户案例合集》!

2025年新年临近,Apache SeaTunnel 社区用户案例精选📘也跟大家见面啦!在过去的时间里,SeaTunnel 社区持续成长,吸引了众多开发者的关注与支持。 为了致谢一路同行的伙伴,也为了激励更多人加入技术共创&…

Milvus×合邦电力:向量数据库如何提升15%电价预测精度

01. 全球能源市场化改革下的合邦电力 在全球能源转型和市场化改革的大背景下,电力交易市场正逐渐成为优化资源配置、提升系统效率的关键平台。电力交易通过市场化手段,促进了电力资源的有效分配,为电力行业的可持续发展提供了动力。 合邦电力…

Day21补代码随想录_20241231_669.修剪二叉搜索树|108.将有序数组转换为二叉搜索树|538.把二叉搜索树转换为累加树

669.修剪二叉搜索树 题目 【比增加和删除节点难的多】 给你二叉搜索树的根节点 root ,同时给定最小边界 low 和最大边界 high。通过修剪二叉搜索树,使得所有节点的值在 [low, high]中。修剪树 不应该 改变保留在树中的元素的相对结构 (即,…

机场安全项目|基于改进 YOLOv8 的机场飞鸟实时目标检测方法

目录 论文信息 背景 摘要 YOLOv8模型结构 模型改进 FFC3 模块 CSPPF 模块 数据集增强策略 实验结果 消融实验 对比实验 结论 论文信息 《科学技术与工程》2024年第24卷第32期刊载了中国民用航空飞行学院空中交通管理学院孔建国, 张向伟, 赵志伟, 梁海军的论文——…

【USRP】教程:在Macos M1(Apple芯片)上安装UHD驱动(最正确的安装方法)

Apple芯片 前言安装Homebrew安装uhd安装gnuradio使用b200mini安装好的路径下载固件后续启动频谱仪功能启动 gnu radio关于博主 前言 请参考本文进行安装,好多人买了Apple芯片的电脑,这种情况下,可以使用UHD吗?答案是肯定的&#…

【C++数据结构——内排序】希尔排序(头歌实践教学平台习题)【合集】

目录😋 任务描述 相关知识 1. 排序算法基础概念 2.插入排序知识 3. 间隔序列(增量序列)的概念 4. 算法的时间复杂度和空间复杂度分析 5. 代码实现技巧(如循环嵌套、索引计算) 测试说明 我的通关代码: 测试结…

每天看一个Fortran文件(9)

最后的输出变量是f 这里面调用了一个关键的子程序,spectral_nudging_filter_fft_2d_ncar 这是一个谱逼近的二维快速傅里叶变换过滤的程序。 二维的滤波这个还不是很清楚,找找技术文件看下 超详细易懂FFT(快速傅里叶变换)及代码…

Centos源码安装MariaDB 基于GTID主从部署(一遍过)

MariaDB安装 安装依赖 yum install cmake ncurses ncurses-devel bison 下载源码 // 下载源码 wget https://downloads.mariadb.org/interstitial/mariadb-10.6.20/source/mariadb-10.6.20.tar.gz // 解压源码 tar xzvf mariadb-10.5.9.tar.gz 编译安装 cmake -DCMAKE_INSTA…

【通俗理解】AI的两次寒冬:从感知机困局到深度学习前夜

AI的两次寒冬:从感知机困局到深度学习前夜 引用(中英双语) 中文: “第一次AI寒冬,是因为感知机局限性被揭示,让人们失去了对算法可行性的信心。” “第二次AI寒冬,则是因为专家系统的局限性和硬…

数据结构9.3 - 文件基础(C++)

目录 1 打开文件字符读写关闭文件 上图源自&#xff1a;https://blog.csdn.net/LG1259156776/article/details/47035583 1 打开文件 法 1法 2ofstream file(path);ofstream file;file.open(path); #include<bits/stdc.h> using namespace std;int main() {char path[]…

下载ffmpeg执行文件

打开网址&#xff1a;Download FFmpeg 按下面步骤操作 解压文件就可以看到ffmpeg的执行文件了&#xff0c;需要通过命令行进行使用&#xff1a; ffmpeg命令行使用参考&#xff1a; ffmpeg 常用命令-CSDN博客

网络安全抓包

#知识点&#xff1a; 1、抓包技术应用意义 //有些应用或者目标是看不到的&#xff0c;这时候就要进行抓包 2、抓包技术应用对象 //app,小程序 3、抓包技术应用协议 //http&#xff0c;socket 4、抓包技术应用支持 5、封包技术应用意义 总结点&#xff1a;学会不同对象采用…

国产编辑器EverEdit - 两种删除空白行的方法

1 使用技巧&#xff1a;删除空白行 1.1 应用场景 用户在编辑文档时&#xff0c;可能会遇到很多空白行需要删除的情况&#xff0c;比如从网页上拷贝文字&#xff0c;可能就会存在大量的空白行要删除。 1.2 使用方法 1.2.1 方法1&#xff1a; 使用编辑主菜单 选择主菜单编辑 …

可以输入的下拉框(下拉框数据过大,页面卡死)

项目场景&#xff1a; 提示&#xff1a;这里简述项目相关背景&#xff1a; 在项目中&#xff0c;有些下拉框的数据过于庞大&#xff0c;这样页面有时候会卡死&#xff0c;在vue3中常用的组件库element-puls中有个组件可以避免 在项目中&#xff0c;有些需求要求下拉框选择的同…

基于Python的音乐播放器 毕业设计-附源码73733

摘 要 本项目基于Python开发了一款简单而功能强大的音乐播放器。通过该音乐播放器&#xff0c;用户可以轻松管理自己的音乐库&#xff0c;播放喜爱的音乐&#xff0c;并享受音乐带来的愉悦体验。 首先&#xff0c;我们使用Python语言结合相关库开发了这款音乐播放器。利用Tkin…

谷粒商城-高级篇完结-Sleuth+Zipkin 服务链路追踪

1、基本概念和整合 1.1、为什么用 微服务架构是一个分布式架构&#xff0c;它按业务划分服务单元&#xff0c;一个分布式系统往往有很多个服务单元。由于服务单元数量众多&#xff0c;业务的复杂性&#xff0c;如果出现了错误和异常&#xff0c;很难去定位 。主要体现在&#…

ollama+FastAPI部署后端大模型调用接口

ollamaFastAPI部署后端大模型调用接口 记录一下开源大模型的后端调用接口过程 一、ollama下载及运行 1. ollama安装 ollama是一个本地部署开源大模型的软件&#xff0c;可以运行llama、gemma、qwen等国内外开源大模型&#xff0c;也可以部署自己训练的大模型 ollama国内地…

pandas系列----DataFrame简介

DataFrame是Pandas库中最常用的数据结构之一&#xff0c;它是一个类似于二维数组或表格的数据结构。DataFrame由多个列组成&#xff0c;每个列可以是不同的数据类型&#xff08;如整数、浮点数、字符串等&#xff09;。每列都有一个列标签&#xff08;column label&#xff09;…

Unity【Colliders碰撞器】和【Rigibody刚体】的应用——小球反弹效果

目录 Collider 2D 定义&#xff1a; 类型&#xff1a; Rigidbody 2D 定义&#xff1a; 属性和行为&#xff1a; 运动控制&#xff1a; 碰撞检测&#xff1a; 结合使用 实用检测 延伸拓展 1、在Unity中优化Collider 2D和Rigidbody 2D的性能 2、Unity中Collider 2D…

Java实现UDP与TCP应用程序

三、Java实现UDP应用程序 3.1 InetAddress类 java.net.InteAddress类是用于描述IP地址和域名的一个Java类&#xff1b; 常用方法如下&#xff1a; public static InetAddress getByName(String host)&#xff1a;根据主机名获取InetAddress对象public String getHostName()…