[深度学习]卷积神经网络CNN

1 图像基础知识

import numpy as np
import matplotlib.pyplot as plt
# 图像数据
#img=np.zeros((200,200,3))
img=np.full((200,200,3),255)
# 可视化
plt.imshow(img)
plt.show()
# 图像读取
img=plt.imread('img.jpg')
plt.imshow(img)
plt.show()

2 CNN概述

  • 卷积层conv+relu
  • 池化层pool
  • 全连接层FC/Linear

3 卷积层

 

import matplotlib.pyplot as plt
import torch
from torch import nn
# 数据
img=plt.imread('img.jpg')
print(img.shape)
# conv
img=torch.tensor(img).permute(2,0,1).unsqueeze(0).to(torch.float32)
conv=nn.Conv2d(in_channels=3,out_channels=5,kernel_size=(3,5),stride=(1,2),padding=2)
# 处理
fm=conv(img)
print(fm.shape)

4 池化层

  • 下采样:样本减少
  • 上采样(深采样):样本增多
  • 最大池化相交平均池化使用更多
  • 通常kernel_size=(3,3),stride=(2,2),padding=(自定义)

import torch
from torch import nn
# 创建数据
torch.random.manual_seed(22)
data=torch.randint(0,10,[1,3,3],dtype=torch.float32)
print(data)

# 最大池化
pool=nn.MaxPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

# 平均池化
pool=nn.AvgPool2d(kernel_size=(2,2),stride=(1,1),padding=0)
print(pool(data))

5 图像分类案例(LeNet)

import torch
import torch.nn as nn
from torchvision.datasets import CIFAR10
from torchvision.transforms import ToTensor
from torchvision.transforms import Compose
import matplotlib.pyplot as plt
from torchsummary import summary
from torch import optim
from torch.utils.data import DataLoader
# 获取数据
train_dataset=CIFAR10(root='cnn_net',train=True,transform=Compose([ToTensor()]),download=True)
test_dataset=CIFAR10(root='cnn_net',train=False,transform=Compose([ToTensor()]),download=True)
print(train_dataset.class_to_idx)
print(train_dataset.data.shape)
print(test_dataset.data.shape)

plt.imshow(test_dataset.data[100])
plt.show()
print(test_dataset.targets[100])

# 模型构建
class ImageClassification(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1=nn.Conv2d(in_channels=3,out_channels=6,kernel_size=3,stride=1,padding=0)
        self.conv2=nn.Conv2d(in_channels=6,out_channels=16,kernel_size=3,stride=1,padding=0)
        self.pool1=nn.MaxPool2d(kernel_size=2,stride=2)
        self.pool2=nn.MaxPool2d(kernel_size=2,stride=2)
        self.fc1=nn.Linear(in_features=576,out_features=120)
        self.fc2=nn.Linear(in_features=120,out_features=84)
        self.out=nn.Linear(in_features=84,out_features=10)
    def forward(self,x):
         x=self.pool1(torch.relu(self.conv1(x)))
         x=self.pool2(torch.relu(self.conv2(x)))
         x=x.reshape(x.size(0),-1)
         x=torch.relu(self.fc1(x))
         x=torch.relu(self.fc2(x))
         out=self.out(x)
         return out

model=ImageClassification()
summary(model,(3,32,32),batch_size=1)

----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1             [1, 6, 30, 30]             168
         MaxPool2d-2             [1, 6, 15, 15]               0
            Conv2d-3            [1, 16, 13, 13]             880
         MaxPool2d-4              [1, 16, 6, 6]               0
            Linear-5                   [1, 120]          69,240
            Linear-6                    [1, 84]          10,164
            Linear-7                    [1, 10]             850
================================================================
Total params: 81,302
Trainable params: 81,302
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.01
Forward/backward pass size (MB): 0.08
Params size (MB): 0.31
Estimated Total Size (MB): 0.40
----------------------------------------------------------------
# 模型训练
optimizer=optim.Adam(model.parameters(),lr=0.0001,betas=[0.9,0.99])
error=nn.CrossEntropyLoss()
epoches=10
for epoch in range(epoches):
    dataloader=DataLoader(train_dataset,batch_size=2,shuffle=True)
    loss_sum=0
    num=0.1
    for x,y in dataloader:
        y_=model(x)
        loss=error(y_,y)
        loss_sum+=loss.item()
        num+=1
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        print(loss_sum/num)
# 模型保存
torch.save(model.state_dict(),'model.pth')
# 模型预测
test_dataloader=DataLoader(test_dataset,batch_size=8,shuffle=False)
model.load_state_dict(torch.load('model.pth',weights_only=False))
corr=0
num=0
for x,y in test_dataloader:
    y_=model(x)
    out=torch.argmax(y_,dim=-1)
    corr+=(out==y).sum()
    num+=len(y)
    
print(corr/num)
    

优化方向

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/884921.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

分布式数据库——HBase基本操作

启动HBase: 1.启动hadoop,进入hadoop的sbin中 cd /opt/hadoop/sbin/ 2.初始化namenode hdfs namenode -format 3.启动hdfs ./start-all.sh 4.启动hbase cd /opt/hbase/bin ./start-hbase.sh 5.使用jps查看进程 jps 以下图片则是hbase启动成功~ 运行HBase ./hbase sh…

64.【C语言】再议结构体(下)(未完)

本文衔接第63篇 目录 6.复习 7.修改默认对齐数 8.结构体传参 01.传递非指针参数 02.传递指针参数(传递地址) 03.对比 9.结构体实现位段 01.位段的定义 02.格式 03.例题 答案速查 分析 前置知识:位段的内存分配 解析 若按浪费空间处理 验证 6.复习 20.【C语言…

20.1 分析pull模型在k8s中的应用,对比push模型

本节重点介绍 : push模型和pull模型监控系统对比为什么在k8s中只能用pull模型的k8s中主要组件的暴露地址说明 push模型和pull模型监控系统 对比下两种系统采用的不同采集模型,即push型采集和pull型采集。不同的模型在性能的考虑上是截然不同的。下面表格简单的说…

全网最全软件测试面试题(含答案解析+文档)

一、软件测试基础面试题 1、阐述软件生命周期都有哪些阶段? 常见的软件生命周期模型有哪些? 软件生命周期是指一个计算机软件从功能确定设计,到开发成功投入使用,并在使用中不断地修改、增补和完善,直到停止该软件的使用的全过程(从酝酿到…

smb文件夹共享设置

UOS统信三种不同场景的文件夹共享,分别是:1、UOS系统间的文件共享;2、Windows7系统访问UOS共享的文件;3、UOS系统访问Windows7共享的文件 文章目录 功能概述功能介绍第一种场景:UOS系统之间的文件共享设置步骤一:打开共享文件夹步骤二:共享管理步骤三:设置共享密码步骤…

Linux使用systemd安排定期任务的操作详解

systemd 定时器是一种替代传统 cron 的方法,用于安排定时任务。 systemd 定时器由两部分组成:一个 .service 文件和一个 .timer 文件。.service 文件定义了要执行的任务,而 .timer 文件设定了何时执行这个任务。 通常位于 /etc/systemd/syste…

扩散模型(2)--1

1.简介 生成模型通过学习并建模输入数据的分布,从而采集生成新的样木,该模型广泛运用于图片视频生成、文本生成和药物分子生成。扩散模型是一类概率生成模型,扩散模型通过向数据中逐步加入噪声来破坏数据的结构,然后学习一个相对应…

【Linux的内存管理】

为什么需要内存管理 分段和分页内存分段内存分页 分页情况下,虚拟内存如何映射到物理地址页表原理多级页表 TLB快表段页式内存管理需要为什么进程地址空间Linux的进程虚拟地址空间管理进程地址空间如何分配虚拟内存虚拟内存的管理程序编译后的二进制文件如何映射到虚…

node-rtsp-stream、jsmpeg.min.js实现rtsp视频在web端播放

1. 服务地址(私有):https://gitee.com/nnlss/video-node-server 2.node-rtsp-stream 需要安装FFMPEG; 3.给推拉流做了开关,可借助http请求,有更好方式可联系; 4.存在问题: 1&…

王道-计组

4 设相对寻址的转移指令占4字节,其中第1、第2字节是操作码,第3、第4字节是相对位移量(用补码表示)。设当前PC的内容为2008H,要求转移到2001H的地址,则该转移指令第3、第4字节的内容应为______ 答案:A 解析:由于指令占4字节,取指令之后(PC)+4。第3、第4字节的内容为:2…

【从0开始自动驾驶】用python做一个简单的自动驾驶仿真可视化界面

【从0开始自动驾驶】用python做一个简单的自动驾驶仿真可视化界面 废话几句废话不多说,直接上源码目录结构init.pysimulator.pysimple_simulator_app.pyvehicle_config.json 废话几句 自动驾驶开发离不开仿真软件成品仿真软件种类多https://zhuanlan.zhihu.com/p/3…

Debian与Ubuntu:深入解读两大Linux发行版的历史与联系

Debian与Ubuntu:深入解读两大Linux发行版的历史与联系 引言 在开源操作系统的领域中,Debian和Ubuntu是两款备受瞩目的Linux发行版。它们不仅在技术上有着密切的联系,而且各自的发展历程和理念也对开源社区产生了深远的影响。本文将详细介绍…

10分钟,AI如何精准写出社会热点文?一篇爆款文章的背后你敢信?

本文背景 很多小伙伴们反馈,用AI输出的文章经常被平台判定为“疑似AI创作”,一但被判定,系统就不会给推荐流量。 到底在这个充斥着AI的大环境下,应该怎样完成AI文章的写作呢?特别是做流量主项目的小伙伴们,…

探索甘肃非遗:Spring Boot网站开发案例

1 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前&#…

【Android 源码分析】Activity短暂的一生 -- 目录篇 (持续更新)

1. 前言 忽然有一天,我想要做一件事:去代码中去验证那些曾经被“灌输”的理论。                                                                                  …

Library介绍(二)

时序弧(timing arc) 描述2个节点延迟信息的数据,可以分为net delay和cell delay两大类。 Net delay: drive cell output pin和drived cell input pin之间的net delay,取决于net rc和drive cell驱动能力及drived cell的load。 C…

Java五子棋

目录 一:案例要求: 二:代码: 三:结果: 一:案例要求: 实现一个控制台下五子棋的程序。用一个二维数组模拟一个15*15路的五子棋棋盘,把每个元素赋值位“┼”可以画出棋…

Rust和Go谁会更胜一筹

在国内,我认为Go语言会成为未来的主流,因为国内程序员号称码农,比较适合搬砖,而Rust对心智要求太高了,不适合搬砖。 就个人经验来看,Go语言简单,下限低,没有什么心智成本&#xff0c…

【代码】Zotero|用文章标题更新 Zotero 的参考文献引用条目信息的 Quicker 动作

如题。 目前只支持期刊和会议文章,并且只支持谷歌学术或 DBLP 能搜到的文章,知网的不支持,如果有人有需要我可以去试着写,但我很懒我看大家也没这个需求。 很早就写完了,一直忘记推了。 刚写完的时候心情是很激动的&a…