1.随机事件与概率

第一章 随机时间与概率

1. 随机事件及其运算

1.1 随机现象

确定性现象:只有一个结果的现象

确定性现象:结果不止一个,且哪一个结果出现,人们事先并不知道

1.2 样本空间

样本空间:随机现象的一切可能基本结果组成的集合,记为 Ω = { ω } \Omega = \{\omega\} Ω={ω},其中 ω \omega ω表示基本结果,又称为样本点

1.3 随机事件

随机事件:随机现象的某些基本样本点组成的集合称为随机时间,简称事件,常用大写字母 A , B , C , ⋯ A,B,C,\cdots A,B,C,表示。

维恩(Venn)图:类似图1的图形

在这里插入图片描述

图1 事件A的维恩图

​ 由样本空间 Ω \Omega Ω中的单个元素组成的子集称为基本事件,而样本空间 Ω \Omega Ω的最大子集(即 Ω \Omega Ω本身)称为必然事件,样本空间 Ω \Omega Ω的最小子集(即空集$\varnothing $)称为不可能事件

1.4 随机变量

随机变量:用来表示随机现象结果的变量,常用大写字母X,Y,Z表示,很多时间都可用随机变量表示,表示时应写明随机变量的含义。

1.5 事件间的关系

包含关系:如果属于A的样本点必属于B,则称A被包含在B中,或称B包含A,记为 A ⊂ B A\subset B AB

相等关系:属于A的样本点必属于B,属于B的样本点必属于A,即 A ⊂ B A\subset B AB B ⊂ A B\subset A BA,则称事件A与B相等,记为A=B

互不相容:如果A与B没有相同的样本点,则称A与B互不相容。

2.概率的定义及其确定方法

​ 1933年苏联数学家柯尔莫戈洛夫首次提出了概率的公理化定义。

2.1 概率的公理化定义

定义2.1 概率

​ 设 Ω \Omega Ω为一个样本空间, F F F Ω \Omega Ω的某些子集组成的一个事件域,如果对于任一事件 A ∈ F A\in F AF,定义在 F F F上的一个实值函数 P ( A ) P(A) P(A)满足:

  1. 非负性公理 A ∈ F A\in F AF,则 P ( A ) ≥ 0 ; P(A)\ge 0; P(A)0;

  2. 正则性公理 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1

  3. 可列可加性公理 A 1 , A 2 , ⋯   , A n , ⋯ A_1,A_2,\cdots,A_n,\cdots A1,A2,,An,互不相容,则:
    P ( ⋃ i = 1 ∞ A i ) = ∑ i = 1 ∞ P ( A i ) P(\bigcup_{i=1}^{\infty} A_i )=\sum_{i=1}^\infty P(A_i) P(i=1Ai)=i=1P(Ai)
    P ( A ) P(A) P(A)为事件 A A A概率,称三元素 ( Ω , F , P ) (\Omega,F,P) (Ω,F,P)概率空间

排列和组合: p13

抽样模型 p16

放回抽样 p18

额,全看一下吧,从p12 的1.2.2 排列与组合公式开始。

3.概率的性质

性质3.1 $P(\varnothing)= 0 $

3.1 概率的可加性

性质3.2 有限可加性

​ 若有限个时间 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An互不相容,则有
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^n A_i)=\sum_{i=1}^n P(A_i) P(i=1nAi)=i=1nP(Ai)

性质3.3 对立事件的概率

​ 对任意时间 A A A,有:
P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1- P(A) P(A)=1P(A)
例题:甲乙抛硬币,甲抛 n + 1 n+1 n+1次,乙抛 n n n次,求甲抛出正面次数大于乙抛出正面次数的概率 P ( A ) P(A) P(A)

解:

​ 事件A定义为 甲 正 > 乙 正 甲_正>乙_正 >,则 A ‾ = 甲 正 ≤ 乙 正 \overline{A}=甲_正\le 乙_正 A=

P ( A ) = P ( 甲 正 > 乙 正 ) = P ( n + 1 − 甲 反 > n − 乙 反 ) = P ( 甲 反 < 乙 反 + 1 ) = P ( 甲 反 ≤ 乙 反 ) = P ( 甲 正 ≤ 乙 正 ) = P ( A ‾ ) P(A)=P(甲_正>乙_正)=P(n+1 - 甲_反 >n - 乙_反)=P(甲_反 < 乙_反 +1)=P(甲_反\le 乙_反)=P(甲_正\le 乙_正)=P(\overline{A}) P(A)=P(>)=P(n+1>n)=P(<+1)=P()=P()=P(A)

​ 则 P ( A ) = P ( A ‾ ) = 1 2 P(A)=P(\overline{A})=\frac 12 P(A)=P(A)=21

3.2 概率的单调性

性质 3.4 包含关系的性质

​ 若 B ⊂ A B\subset A BA,则
P ( A − B ) = P ( A ) − P ( B ) P(A-B) = P(A)-P(B) P(AB)=P(A)P(B)
推论(单调性) B ⊂ A B\subset A BA ,则 P ( A ) ≥ P ( B ) P(A)\ge P(B) P(A)P(B)

性质3.5 概率差 p30

​ 对任意两个事件 A , B A,B A,B,有
P ( A − B ) = P ( A ) − P ( A B ) P(A-B) = P(A)-P(AB) P(AB)=P(A)P(AB)

3.3 概率的加法公式

性质3.6 加法公式 p31

​ 对任意两个事件 A , B A,B A,B
P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B) = P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
​ 对任意n个时间 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,有:
P ( ⋃ i = 1 n A i ) = ∑ i = 1 n P ( A − i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j < k ≤ n P ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 ⋯ A n ) P(\bigcup_{i=1}^n A_i) =\sum_{i=1}^n P(A-i) - \sum_{1\le i<j \le n}P(A_iA_j) +\sum_{1\le i < j <k\le n}P(A_iA_jA_k)+\cdots+(-1)^{n-1}P(A_1A_2\cdots A_n) P(i=1nAi)=i=1nP(Ai)1i<jnP(AiAj)+1i<j<knP(AiAjAk)++(1)n1P(A1A2An)
推论(半可加性) 对任意两个事件 A , B A,B A,B,有
P ( A ∪ B ) ≤ P ( A ) + P ( B ) P(A\cup B)\le P(A)+P(B) P(AB)P(A)+P(B)
​ 对任意 n n n个事件 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An
P ( ⋃ i = 1 n A i ) ≤ ∑ i = 1 n P ( A i ) P(\bigcup_{i=1}^n A_i) \le \sum_{i=1}^n P(A_i) P(i=1nAi)i=1nP(Ai)

​ p32 的配对问题,很重要

3.4 概率的连续性

定义3.1 极限事件
  1. F F F中任一单调不减的事件序列 F 1 ⊂ F 2 ⊂ ⋯ ⊂ F n ⊂ ⋯ F_1\subset F_2 \subset\cdots \subset F_n \subset \cdots F1F2Fn,称可列并 ⋃ n = 1 ∞ F n \bigcup_{n=1}^\infty F_n n=1Fn { F n } \{F_n\} {Fn}极限事件,记为
    l i m n → ∞ F n = ⋃ n = 1 ∞ F n lim_{n\rightarrow \infty}F_n = \bigcup_{n=1}^\infty F_n limnFn=n=1Fn

  2. F F F中任一单调不增的事件序列 E 1 ⊃ E 2 ⊃ ⋯ ⊃ E n ⊃ ⋯ E_1\supset E_2 \supset\cdots \supset E_n \supset \cdots E1E2En,称可列并 ⋂ n = 1 ∞ E n \bigcap_{n=1}^\infty E_n n=1En { E n } \{E_n\} {En}极限事件,记为
    l i m n → ∞ E n = ⋂ n = 1 ∞ E n lim_{n\rightarrow \infty}E_n = \bigcap_{n=1}^\infty E_n limnEn=n=1En

定义3.2 连续,上连续,下连续

对F上的一个概率P

  1. 若它对F中任一单调不减的事件序列 { F n } \{F_n\} {Fn}均成立
    l i m n → ∞ P ( F n ) = P ( l i m n → ∞ F n ) lim_{n\rightarrow \infty} P(F_n) = P(lim_{n\rightarrow \infty}F_n) limnP(Fn)=P(limnFn)
    则称概率 P P P下连续的,(左连续,P从小变大)

  2. 若它对F中任一单调不增的事件序列 { E n } \{E_n\} {En}均成立
    l i m n → ∞ P ( E n ) = P ( l i m n → ∞ E n ) lim_{n\rightarrow \infty} P(E_n) = P(lim_{n\rightarrow \infty}E_n) limnP(En)=P(limnEn)
    则称概率 P P P上连续的,(右连续,P从大变小)

性质3.7 概率的连续性 p33

​ 若P为事件域F上的概率,则P既是下连续的,又是上连续的。

性质3.8 可列可加性的条件 p34

​ 若P是F上满足 P ( Ω ) = 1 P(\Omega) = 1 P(Ω)=1的非负集合函数,则它具有可列可加性的充要条件是:

  1. 它是有限可加的
  2. 它是下连续的

4.条件概率

4.1条件概率的定义 p37

定义4.1 条件概率

​ 设A与B是样本空间 Ω \Omega Ω中的两事件,若$P(B)\gt 0 $,则称:
P ( A ∣ B ) = P ( A B ) P ( B ) P(A|B) = \frac{P(AB)}{P(B)} P(AB)=P(B)P(AB)
​ 为在B发生下A的条件概率,简称条件概率

性质4.1 条件概率的性质

条件概率是概率,即若设 P ( B ) > 0 P(B)\gt 0 P(B)>0,则:

  1. P ( A ∣ B ) ≥ 0 , A ∈ F P(A|B)\ge 0,A\in F P(AB)0,AF
  2. P ( Ω ∣ B ) = 1 P(\Omega|B) = 1 P(Ω∣B)=1
  3. 若F中的 A 1 , A 2 , ⋯   , A n , ⋯ A_1,A_2,\cdots,A_n,\cdots A1,A2,,An,互不相容,则

P ( ⋃ n = 1 ∞ A n ∣ B ) = ∑ n − 1 ∞ P ( A n ∣ B ) P(\bigcup_{n=1}^\infty A_n |B) =\sum_{n-1}^\infty P(A_n|B) P(n=1AnB)=n1P(AnB)

4.2 乘法公式

  1. P ( B ) > 0 P(B)\gt 0 P(B)>0,则
    P ( A B ) = P ( B ) P ( A ∣ B ) P(AB) = P(B)P(A|B) P(AB)=P(B)P(AB)

  2. P ( A 1 A 2 ⋯ A n − 1 ) > 0 P(A_1A_2\cdots A_{n-1})\gt 0 P(A1A2An1)>0,则
    P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋯ P ( A n ∣ A 1 A 2 ⋯ A n − 1 ) P(A_1A_2\cdots A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\cdots P(A_n|A_1A_2\cdots A_{n-1}) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)

罐子模型 p39

4.3 全概率公式 p40

​ 设 B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn为样本空间 Ω \Omega Ω的一个分割,即 B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn互不相容,且 ⋃ i = 1 n B i = Ω \bigcup_{i=1}^n B_i=\Omega i=1nBi=Ω,如果 P ( B i ) > 0 , i = 1 , 2 , ⋯   , n P(B_i)\gt 0,i=1,2,\cdots,n P(Bi)>0,i=1,2,,n,则对任一事件有:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A) =\sum_{i=1}^n P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)

4.4 贝叶斯公式 p43

​ 设 B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn是样本空间 Ω \Omega Ω的一个分割,即 B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn互不相容,且 ⋃ i = 1 n B i = Ω \bigcup_{i=1} ^n B_i = \Omega i=1nBi=Ω,如果 P ( A ) > 0 , P ( B i ) > 0 , i = 1 , 2 , ⋯   , n P(A)>0,P(B_i)>0,i=1,2,\cdots,n P(A)>0,P(Bi)>0,i=1,2,,n,则
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) , i = 1 , 2 , ⋯   , n P(B_i|A)=\cfrac{P(AB_i)}{P(A)}=\cfrac{P(B_i)P(A|B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)},i=1,2,\cdots,n P(BiA)=P(A)P(ABi)=j=1nP(Bj)P(ABj)P(Bi)P(ABi),i=1,2,,n
​ 分子用乘法公式,分母用全概率公式

贝叶斯分类器 p43

​ 肝癌的例子p43

5.独立性

5.1 两个事件的独立性

独立性:一个事件的发生不影响另一个事件的发生:
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
​ 若 P ( A ) = 0 ∣ ∣ P ( B ) = 0 P(A)=0||P(B)=0 P(A)=0∣∣P(B)=0,等式依然成立。

定义5.1 独立

​ 如果 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B),则称 A A A B B B相互独立,简称 A A A B B B独立,否则成不独立相依

独立的性质

​ 若事件 A A A B B B独立,则 A A A B ‾ \overline{B} B独立, A ‾ \overline{A} A B B B独立, A ‾ \overline{A} A B ‾ \overline{B} B独立

​ 证明:P48,由补的性质可以推出

5.2 多个事件的相互独立性

定义 5.2 三个事件的独立

​ 设 A , B , C A,B,C A,B,C是三个事件,如果有:
{ P ( A B ) = P ( A ) P ( B ) P ( A B ) = P ( A ) P ( C ) P ( A B ) = P ( B ) P ( C ) \left\{ \begin{aligned} P(AB) & = P(A)P(B)\\ P(AB) & = P(A)P(C)\\ P(AB) & = P(B)P(C) \end{aligned} \right. P(AB)P(AB)P(AB)=P(A)P(B)=P(A)P(C)=P(B)P(C)
​ 则称 A , B , C A,B,C A,B,C两两独立,若还有:
P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC) = P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C)
​ 则称 A , B , C A,B,C A,B,C相互独立

定义 5.3 相互独立

​ 设有 n n n个事件 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,对任意的 1 ≤ i < j < k < ⋯ ≤ n 1\le i \lt j \lt k \lt \cdots \le n 1i<j<k<n,如果以下等式均成立:
{ P ( A i A j ) = P ( A i ) P ( A j ) , P ( A i A j A k ) = P ( A i ) P ( A j ) P ( A k ) , ⋯ ⋯ ⋯ P ( A 1 A 2 ⋯ A n ) = P ( A 1 ) P ( A 2 ) ⋯ P ( A n ) , \left\{ \begin{aligned} P(A_i A_j) & =P(A_i)P(A_j),\\ P(A_i A_j A_k) & =P(A_i)P(A_j)P(A_k),\\ &\cdots\cdots\cdots\\ P(A_1 A_2\cdots A_n) & =P(A_1)P(A_2)\cdots P(A_n), \end{aligned} \right. P(AiAj)P(AiAjAk)P(A1A2An)=P(Ai)P(Aj),=P(Ai)P(Aj)P(Ak),⋯⋯⋯=P(A1)P(A2)P(An),
​ 则称这 n n n个事件相互独立

例1.5.5 p50 ,甲乙比赛射击

例1.5.6 p51 ,桥式电路

5.3 试验的独立性

​ 利用事件的独立性可以定义两个或更多个试验的独立性

定义5.4 试验相互独立

​ 设有两个试验 E 1 E_1 E1 E 2 E_2 E2,假如试验 E 1 E_1 E1的任一结果(事件)与试验 E 2 E_2 E2的任一结果(事件)都是相互独立的事件,则称这两个试验相互独立

​ 类似的可推广定义到n个试验,如果n个试验的任一结果都是相互独立的事件,则称这n个试验相互独立,如果这 n n n个独立试验还是相同的,则称其为n重独立重复试验,如果在 n n n重独立重复试验中,每次试验的可能结果为两个: A A A A ‾ \overline{A} A,则称这种试验为n重伯努利(Bernoulli)试验

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/883450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

什么是智慧党建?可视化大屏如何推动高质量党建?

在数字化时代&#xff0c;党建工作迎来了新的发展机遇。智慧党建&#xff0c;作为新时代党建工作的创新模式&#xff0c;正逐渐成为推动党的建设向高质量发展的重要力量。它不仅改变了传统的党建工作方式&#xff0c;还通过现代信息技术的应用&#xff0c;提升了党建工作的效率…

【CSS】鼠标 、轮廓线 、 滤镜 、 堆叠层级

cursor 鼠标outline 轮廓线filter 滤镜z-index 堆叠层级 cursor 鼠标 值说明值说明crosshair十字准线s-resize向下改变大小pointer \ hand手形e-resize向右改变大小wait表或沙漏w-resize向左改变大小help问号或气球ne-resize向上右改变大小no-drop无法释放nw-resize向上左改变…

AI绘画Stable Diffusion 自制素材工具: layerdiffusion插件—你的透明背景图片生成工具

大家好&#xff0c;我是灵魂画师向阳 今天给大家分享一款AI绘画的神级插件—LayerDiffusion。 Layerdiffusion是一个用于stable-diffusion-webui 的透明背景生成&#xff08;不是生成图再工具扣图&#xff0c;是直接生成透明背景透明图像&#xff09;插件扩展&#xff0c;它可…

Java笔试面试题AI答之设计模式(2)

文章目录 6. 什么是单例模式&#xff0c;以及他解决的问题&#xff0c;应用的环境 &#xff1f;解决的问题应用的环境实现方式 7. 什么是工厂模式&#xff0c;以及他解决的问题&#xff0c;应用的环境 &#xff1f;工厂模式简述工厂模式解决的问题工厂模式的应用环境工厂模式的…

音乐服务器测试报告

项目背景 该音乐服务器系统使用的是前后端分离的方式来实现,将相关数据存储到数据库中, 且将其部署到云服务器上. 前端主要构成部分有: 登录页面, 列表页面, 喜欢页面, 添加歌曲4个页面组成. 通过结合后端实现了主要的功能: 登录, 播放音乐, 添加音乐, 收藏音乐, 删除音乐, 删…

vscode 配置django

创建运行环境 使用pip安装Django&#xff1a;pip install django。 创建一个新的Django项目&#xff1a;django-admin startproject myproject。 打开VSCode&#xff0c;并在项目文件夹中打开终端。 在VSCode中安装Python扩展&#xff08;如果尚未安装&#xff09;。 在项…

MySQL InnoDB MVCC读写逻辑分析与调测

目标 1、构建MVCC读写场景 2、gdb调试MVCC过程&#xff0c;输出流程图&#xff08;函数级别调用过程&#xff09; 前提 准备1 打开服务端 查询mysqld进程号 线程树 打开客户端&#xff0c;想创建几个事务号就打开几个客户端 准备2 数据库mvcc&#xff0c;两个表test和stu…

Spring Boot框架在甘肃非遗文化网站设计中的运用

3 系统分析 当用户确定开发一款程序时&#xff0c;是需要遵循下面的顺序进行工作&#xff0c;概括为&#xff1a;系统分析–>系统设计–>系统开发–>系统测试&#xff0c;无论这个过程是否有变更或者迭代&#xff0c;都是按照这样的顺序开展工作的。系统分析就是分析系…

数据库——sql语言学习 查找语句

一、什么是sql SQL是结构化查询语言&#xff08;Structured Query Language&#xff09;的缩写&#xff0c;它是一种专门为数据库设计的操作命令集&#xff0c;用于管理关系数据库管理系统&#xff08;RDBMS&#xff09;。 二、查找相关语句 ‌‌首先&#xff0c;我们已经设…

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解

【洛谷】P10417 [蓝桥杯 2023 国 A] 第 K 小的和 的题解 题目传送门 题解 CSP-S1 补全程序&#xff0c;致敬全 A 的答案&#xff0c;和神奇的预言家。 写一下这篇的题解说不定能加 CSP 2024 的 RP 首先看到 k k k 这么大的一个常数&#xff0c;就想到了二分。然后写一个判…

Unity 设计模式 之 创建型模式 -【单例模式】【原型模式】 【建造者模式】

Unity 设计模式 之 创建型模式 -【单例模式】【原型模式】 【建造者模式】 目录 Unity 设计模式 之 创建型模式 -【单例模式】【原型模式】 【建造者模式】 一、简单介绍 二、单例模式 (Singleton Pattern) 1、什么时候使用单例模式 2、单例模式的好处 3、使用单例模式的…

sheng的学习笔记-logback

基础知识 什么是logback Logback是一个用于Java应用程序的日志框架&#xff0c;提供了更好的性能、可扩展性和灵活性。 与Log4j相比&#xff0c;Logback提供了更快的速度和更低的内存占用&#xff0c;这使得它成为大型企业级应用程序的理想选择。 ‌logback和slf4j的关系是…

Hadoop安装与配置

一、Hadoop安装与配置 1、解压Hadoop安装包 找到hadoop-2.6.0.tar.gz,将其复到master0节点的”/home/csu”目录内&#xff0c;解压hadoop [csumaster0 ~]$ tar -zxvf ~/hadoop-2.6.0.tar.gz 解压成成功后自动在csu目录下创建hadoop-2.6.0子目录&#xff0c;可以用cd hadoo…

WGS1984快速度确定平面坐标系UTM分带(快速套表、公式计算、软件范围判定)

之前我们介绍了坐标系3带6带快速确定带号及中央经线&#xff08;快速套表、公式计算、软件范围判定&#xff09;就&#xff0c;讲的是CGCS2000 高斯克吕格的投影坐标系。 那还有我们经常用的WGS1984的平面坐标系一般用什么投影呢? 对于全球全国的比如在线地图使用&#xff1a…

9.sklearn-K-means算法

文章目录 环境配置&#xff08;必看&#xff09;头文件引用K-means算法1.简介2.API3.代码工程4.运行结果5.模型评估6.小结优缺点 环境配置&#xff08;必看&#xff09; Anaconda-创建虚拟环境的手把手教程相关环境配置看此篇文章&#xff0c;本专栏深度学习相关的版本和配置&…

前端sm2国密加密时注意

如下方法&#xff1a; export function encrypt(str) {const sm2 require("sm-crypto").sm2;const cipherMode 1; // 1 - C1C3C2&#xff0c;0 - C1C2C3&#xff0c;默认为1//自定义密钥let publicKey "xxxxxxxx";//此处加密let a sm2.doEncrypt(str,…

django项目添加测试数据的三种方式

文章目录 自定义终端命令Faker添加模拟数据基于终端脚本来完成数据的添加编写python脚本编写shell脚本执行脚本需要权限使用shell命令来完成测试数据的添加 添加测试数据在工作中一共有三种方式&#xff1a; 可以根据django的manage.py指令进行[自定义终端命令]可以采用第三方…

数据集-目标检测系列-兔子检测数据集 rabbit >> DataBall

数据集-目标检测系列-兔子检测数据集 rabbit >> DataBall 数据集-目标检测系列-兔子检测数据集 rabbit 数据量&#xff1a;8k 想要进一步了解&#xff0c;请联系。 DataBall 助力快速掌握数据集的信息和使用方式&#xff0c;会员享有 百种数据集&#xff0c;持续增加…

如何在Excel中快速找出前 N 名,后 N 名

有如下销售额统计表&#xff1a; 找出销售额排前 10 名的产品及其销售额&#xff0c;和销售额排倒数 10 名以内的产品及其销售额&#xff0c;结果如下所示&#xff1a; 前 10 名&#xff1a; spl("E(?1).sort(ProductSales:-1).to(10)",A1:C78)后 10 名&#xff1…

当大语言模型应用到教育领域时会有什么火花出现?

当大语言模型应用到教育领域时会有什么火花出现&#xff1f; LLM Education会出现哪些机遇与挑战? 今天笔者分享一篇来自New York University大学的研究论文&#xff0c;另外一篇则是来自Michigan State University与浙江师范大学的研究论文&#xff0c;希望对这个话题感兴趣…