C++: unordered系列关联式容器

目录

  • 1. unordered系列关联式容器
    • 1.1 unordered_map
    • 1.2 unordered_set
  • 2. 哈希概念
  • 3. 哈希冲突
  • 4. 闭散列
  • 5. 开散列

博客主页: 酷酷学

感谢关注!!!


正文开始

1. unordered系列关联式容器

在C++98中,STL提供了底层为红黑树结构的一系列关联式容器,在查询时效率可达到 l o g 2 N log_2 N log2N,即最差情况下需要比较红黑树的高度次,当树中的节点非常多时,查询效率也不理想。最好的查询是,进行很少的比较次数就能够将元素找到,因此在C++11中,STL又提供了4个unordered系列的关联式容器,这四个容器与红黑树结构的关联式容器使用方式基本类似,只是其底层结构不同,本文中只对unordered_map和unordered_set进行介绍,unordered_multimap和unordered_multiset可查看文档介绍。

1.1 unordered_map

在这里插入图片描述

  1. unordered_map是存储<key, value>键值对的关联式容器,其允许通过keys快速的索引到与
    其对应的value。
  2. 在unordered_map中,键值通常用于惟一地标识元素,而映射值是一个对象,其内容与此
    键关联。键和映射值的类型可能不同。
  3. 在内部,unordered_map没有对<kye, value>按照任何特定的顺序排序, 为了能在常数范围内
    找到key所对应的value,unordered_map将相同哈希值的键值对放在相同的桶中。
  4. unordered_map容器通过key访问单个元素要比map快,但它通常在遍历元素子集的范围迭
    代方面效率较低。
  5. unordered_maps实现了直接访问操作符(operator[]),它允许使用key作为参数直接访问
    value。
  6. 它的迭代器至少是前向迭代器。

在这里插入图片描述

  1. unordered_map的构造

在这里插入图片描述
在这里插入图片描述

  1. unordered_map的容量

在这里插入图片描述

  1. unordered_map的迭代器

在这里插入图片描述

  1. unordered_map的元素访问

在这里插入图片描述

  1. unordered_map的查询

在这里插入图片描述

注意:unordered_map中key是不能重复的,因此count函数的返回值最大为1

  1. unordered_map的修改操作

在这里插入图片描述

  1. unordered_map的桶操作

在这里插入图片描述

1.2 unordered_set

可点击查此处看帮助文档

2. 哈希概念

顺序结构以及平衡树中,元素关键码与其存储位置之间没有对应的关系,因此在查找一个元素时,必须要经过关键码的多次比较。顺序查找时间复杂度为O(N),平衡树中为树的高度,即O( l o g 2 N log_2 N log2N),搜索的效率取决于搜索过程中元素的比较次数。

理想的搜索方法:可以不经过任何比较,一次直接从表中得到要搜索的元素。如果构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到该元素。

当向该结构中:

  • 插入元素
    根据待插入元素的关键码,以此函数计算出该元素的存储位置并按此位置进行存放
  • 搜索元素
    对元素的关键码进行同样的计算,把求得的函数值当做元素的存储位置,在结构中按此位置取元素比较,若关键码相等,则搜索成功

该方式即为哈希(散列)方法,哈希方法中使用的转换函数称为哈希(散列)函数,构造出来的结构称为哈希表(Hash Table)(或者称散列表)

例如:数据集合{1,7,6,4,5,9};
哈希函数设置为:hash(key) = key % size; size为存储元素底层空间总的大小。

在这里插入图片描述

用该方法进行搜索不必进行多次关键码的比较,因此搜索的速度比较快
问题:按照上述哈希方式,向集合中插入元素44,会出现什么问题?

3. 哈希冲突

对于两个数据元素的关键字 k i k_i ki k j k_j kj(i != j),有 k i k_i ki != k j k_j kj,但有:Hash( k i k_i ki) == Hash( k j k_j kj),即:不同关键字通过相同哈希哈数计算出相同的哈希地址,该种现象称为哈希冲突或哈希碰撞。

把具有不同关键码而具有相同哈希地址的数据元素称为“同义词”。
发生哈希冲突该如何处理呢?

引起哈希冲突的一个原因可能是:哈希函数设计不够合理。

哈希函数设计原则:

  • 哈希函数的定义域必须包括需要存储的全部关键码,而如果散列表允许有m个地址时,其值
  • 域必须在0到m-1之间
  • 哈希函数计算出来的地址能均匀分布在整个空间中
  • 哈希函数应该比较简单

常见哈希函数

  1. 直接定址法–(常用)
    取关键字的某个线性函数为散列地址:Hash(Key)= A*Key + B
    优点:简单、均匀
    缺点:需要事先知道关键字的分布情况
    使用场景:适合查找比较小且连续的情况
    面试题:字符串中第一个只出现一次字符
  2. 除留余数法–(常用)
    设散列表中允许的地址数为m,取一个不大于m,但最接近或者等于m的质数p作为除数,
    按照哈希函数:Hash(key) = key% p(p<=m),将关键码转换成哈希地址
  3. 平方取中法–(了解)
    假设关键字为1234,对它平方就是1522756,抽取中间的3位227作为哈希地址;
    再比如关键字为4321,对它平方就是18671041,抽取中间的3位671(或710)作为哈希地址
    平方取中法比较适合:不知道关键字的分布,而位数又不是很大的情况
  4. 折叠法–(了解)
    折叠法是将关键字从左到右分割成位数相等的几部分(最后一部分位数可以短些),然后将这
    几部分叠加求和,并按散列表表长,取后几位作为散列地址。
    折叠法适合事先不需要知道关键字的分布,适合关键字位数比较多的情况
  5. 随机数法–(了解)
    选择一个随机函数,取关键字的随机函数值为它的哈希地址,即H(key) = random(key),其中
    random为随机数函数。
    通常应用于关键字长度不等时采用此法
  6. 数学分析法–(了解)
    设有n个d位数,每一位可能有r种不同的符号,这r种不同的符号在各位上出现的频率不一定
    相同,可能在某些位上分布比较均匀,每种符号出现的机会均等,在某些位上分布不均匀只
    有某几种符号经常出现。可根据散列表的大小,选择其中各种符号分布均匀的若干位作为散
    列地址。例如:

在这里插入图片描述

假设要存储某家公司员工登记表,如果用手机号作为关键字,那么极有可能前7位都是 相同的,那么我们可以选择后面的四位作为散列地址,如果这样的抽取工作还容易出现 冲突,还可以对抽取出来的数字进行反转(如1234改成4321)、右环位移(如1234改成4123)、左环移位、前两数与后两数叠加(如1234改成12+34=46)等方法。

数字分析法通常适合处理关键字位数比较大的情况,如果事先知道关键字的分布且关键字的若干位分布较均匀的情况

注意:哈希函数设计的越精妙,产生哈希冲突的可能性就越低,但是无法避免哈希冲突

解决哈希冲突两种常见的方法是:闭散列和开散列

4. 闭散列

闭散列:也叫开放定址法,当发生哈希冲突时,如果哈希表未被装满,说明在哈希表中必然还有空位置,那么可以把key存放到冲突位置中的“下一个” 空位置中去. 那如何寻找下一个空位置呢?

  1. 线性探测
    比如2.1中的场景,现在需要插入元素44,先通过哈希函数计算哈希地址,hashAddr为4,因此44理论上应该插在该位置,但是该位置已经放了值为4的元素,即发生哈希冲突。

线性探测:从发生冲突的位置开始,依次向后探测,直到寻找到下一个空位置为止。

插入

  • 通过哈希函数获取待插入元素在哈希表中的位置
  • 如果该位置中没有元素则直接插入新元素,如果该位置中有元素发生哈希冲突,使用线性探测找到下一个空位置,插入新元素

在这里插入图片描述

删除

采用闭散列处理哈希冲突时,不能随便物理删除哈希表中已有的元素,若直接删除元素会影响其他元素的搜索。比如删除元素4,如果直接删除掉,44查找起来可能会受影响。因此线性探测采用标记的伪删除法来删除一个元素。

// 哈希表每个空间给个标记
// EMPTY此位置空, EXIST此位置已经有元素, DELETE元素已经删除
enum State{EMPTY, EXIST, DELETE}; 

思考:哈希表什么情况下进行扩容?如何扩容?

在这里插入图片描述

线性探测优点:实现非常简单,
线性探测缺点:一旦发生哈希冲突,所有的冲突连在一起,容易产生数据“堆积”,即:不同
关键码占据了可利用的空位置,使得寻找某关键码的位置需要许多次比较,导致搜索效率降
低。如何缓解呢?

二次探测

线性探测的缺陷是产生冲突的数据堆积在一块,这与其找下一个空位置有关系,因为找空位置的方式就是挨着往后逐个去找,因此二次探测为了避免该问题,找下一个空位置的方法为: H i H_i Hi = ( H 0 H_0 H0 + i 2 i^2 i2 )% m, 或者: H i H_i Hi = ( H 0 H_0 H0 - i 2 i^2 i2 )% m。其中:i = 1,2,3…, H 0 H_0 H0是通过散列函数Hash(x)对元素的关键码 key 进行计算得到的位置,m是表的大小。

如果要插入44,产生冲突,使用解决后的情况为:

在这里插入图片描述

研究表明:当表的长度为质数且表装载因子a不超过0.5时,新的表项一定能够插入,而且任何一个位置都不会被探查两次。因此只要表中有一半的空位置,就不会存在表满的问题。在搜索时可以不考虑表装满的情况,但在插入时必须确保表的装载因子a不超过0.5,如果超出必须考虑增容。

因此:比散列最大的缺陷就是空间利用率比较低,这也是哈希的缺陷。

代码实现:

#pragma once
#include<iostream>
#include<vector>
using namespace std;

template<class K>
struct HashFunc
{
	size_t operator()(const K& key)
	{
		return (size_t)key;
	}
};

//特化
template<>
struct HashFunc<string>
{
	size_t operator()(const string& key)
	{
		size_t hash = 0;
		for (auto e : key)
		{
			hash *= 31;
			hash += e;
		}
		return hash;
	}
};

namespace open_address
{
	enum State
	{
		EXIST,
		EMPTY,
		DELETE
	};
	template<class K,class V>
	struct HashData
	{
		pair<K, V> _kv;
		State _state = EMPTY;
	};

	template<class K,class V,class Hash = HashFunc<K>>
	class HashTable
	{
	public:
		HashTable()
		{
			_tables.resize(10);
		}

		bool Insert(const pair<K,V>& kv)
		{

			//3.不允许冗余
			if (Find(kv.first)) return false;
			//2.扩容
			if (_n * 10 / _tables.size() >= 7)
			{
				//vector<HashData<K, V>> newTables(_tables.size() * 2);
				//遍历旧表...
				//_tables.swap(newTables);
				HashTable<K, V, Hash> newHT;
				newHT._tables.resize(_tables.size() * 2);
				for (size_t i = 0; i < _tables.size(); i++)
				{
					if (_tables[i]._state == EXIST)
					{
						newHT.Insert(_tables[i]._kv);
					}
				}
				_tables.swap(newHT._tables);
			}
			//1.插入
			Hash hs;
			size_t hashi = hs(kv.first) % _tables.size();
			while (_tables[hashi]._state == EXIST)
			{
				++hashi;
				hashi %= _tables.size();
			}
			_tables[hashi]._kv = kv;
			_tables[hashi]._state = EXIST;
			++_n;

			return true;
		}

		HashData<K, V>* Find(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _tables.size();
			while (_tables[hashi]._state != EMPTY)
			{
				if (_tables[hashi]._state == EXIST
					&& _tables[hashi]._kv.first == key)
				{
					return &_tables[hashi];
				}
				++hashi;
				hashi %= _tables.size();
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			HashData<K, V>* ret = Find(key);
			if (ret == nullptr)
			{
				return false;
			}
			else
			{
				ret->_state = DELETE;
				return true;
			}
		}
		
	private:
		vector<HashData<K, V>> _tables;
		size_t _n = 0;//表中存储的数据个数
	};

	void test()
	{
		HashTable<int, int> h;
		HashTable<string, string> sh;
		/*sh.Insert({"asd","qwewr"});
		cout << sh.Find("asd") << endl;*/
		h.Insert({ 2,2 });

		//h.Erase(2);
		cout << h.Insert({ 2,3 }) << endl;
		//cout << h.Find(1) << endl;

	}
}

5. 开散列

  1. 开散列概念
    开散列法又叫链地址法(开链法),首先对关键码集合用散列函数计算散列地址,具有相同地
    址的关键码归于同一子集合,每一个子集合称为一个桶,各个桶中的元素通过一个单链表链
    接起来,各链表的头结点存储在哈希表中。

在这里插入图片描述
在这里插入图片描述
从上图可以看出,开散列中每个桶中放的都是发生哈希冲突的元素。

代码实现:

namespace hash_bucket
{
	template<class K,class V>
	struct HashNode
	{
		pair<K, V> _kv;
		HashNode<K, V>* _next;

		HashNode(const pair<K, V>& kv)
			:_kv(kv)
			,_next(nullptr)
		{}
	};

	template<class K, class V,class Hash = HashFunc<K>>
	class HashTable
	{
		typedef HashNode<K, V> Node;
	public:
		HashTable()
		{
			_table.resize(10, nullptr);
		}

		~HashTable()
		{
			//依次把每个桶释放
			for (size_t i = 0; i < _table.size(); i++)
			{
				Node* cur = _table[i];
				while (cur)
				{
					Node* next = cur->_next;
					delete cur;
					cur = next;
				}
				_table[i] = nullptr;
			}
		}

		bool Insert(const pair<K, V>& kv)
		{
			//1.插入
			Hash hs;
			size_t hashi = hs(kv.first) % _table.size();
			//2.扩容
			if (_n == _table.size())
			{
				vector<Node*> newtables(_table.size() * 2, nullptr);
				for (size_t i = 0; i < _table.size(); i++)
				{
					Node* cur = _table[i];
					while (cur)
					{
						Node* next = cur->_next;
						//旧节点重新映射到新节点中
						size_t hashi = hs(cur->_kv.first) % newtables.size();
						//头插到新表
						cur->_next = newtables[hashi];
						newtables[hashi] = cur;
						cur = next;
					}
					//将原表置空
					_table[i] = nullptr;
				}
				_table.swap(newtables);
			}
			//头插
			Node* newnode = new Node(kv);
			newnode->_next = _table[hashi];
			_table[hashi] = newnode;
			++_n;
			return true;
		}

		Node* Find(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _table.size();
			Node* cur = _table[hashi];
			while (cur)
			{
				if (cur->_kv.first == key)
				{
					return cur;
				}
				cur = cur->_next;
			}
			return nullptr;
		}

		bool Erase(const K& key)
		{
			Hash hs;
			size_t hashi = hs(key) % _table.size();
			Node* prev = nullptr;
			Node* cur = _table[hashi];
			while (cur)
			{
				if (cur->_kv.first == key) 
				{
					//如果是头删
					if (prev == nullptr)
					{
						_table[hashi] = cur->_next;
					}
					else
					{
						prev->_next = cur->_next;
					}
					delete cur;
					--_n;
					return true;
				}
				prev = cur;
				cur = cur->_next;
			}
			return false;
		}
	private:
		vector<Node*> _table;
		size_t _n = 0;
	};

	void testbucket()
	{
		HashTable<int, int> s;
		s.Insert({ 1,2 });

	}
}

开散列与闭散列比较

应用链地址法处理溢出,需要增设链接指针,似乎增加了存储开销。事实上:

由于开地址法必须保持大量的空闲空间以确保搜索效率,如二次探查法要求装载因子a <= 0.7,而表项所占空间又比指针大的多,所以使用链地址法反而比开地址法节省存储空间。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/882690.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【论文阅读】Grounding Language with Visual Affordances over Unstructured Data

Abstract 最近的研究表明&#xff0c;大型语言模型&#xff08;llms&#xff09;可以应用于将自然语言应用于各种各样的机器人技能。然而&#xff0c;在实践中&#xff0c;学习多任务、语言条件机器人技能通常需要大规模的数据收集和频繁的人为干预来重置环境或帮助纠正当前的…

Pyspark dataframe基本内置方法(5)

文章目录 Pyspark sql DataFrame相关文章toDF 设置新列名toJSON row对象转换json字符串toLocallterator 获取迭代器toPandas 转换python dataframetransform dataframe转换union unionALL 并集不去重&#xff08;按列顺序&#xff09;unionByName 并集不去重&#xff08;按列名…

力扣234 回文链表 Java版本

文章目录 题目描述代码 题目描述 给你一个单链表的头节点 head &#xff0c;请你判断该链表是否为 回文链表 。如果是&#xff0c;返回 true &#xff1b;否则&#xff0c;返回 false 。 示例 1&#xff1a; 输入&#xff1a;head [1,2,2,1] 输出&#xff1a;true 示例 2&…

Mac电脑上最简单安装Python的方式

背景 最近换了一台新的 MacBook Air 电脑&#xff0c;所有的开发软件都没有了&#xff0c;需要重新配环境&#xff0c;而我现在最常用的开发程序就是Python。这篇文章记录一下我新Mac电脑安装Python的全过程&#xff0c;也给大家一些思路上的提醒。 以下是我新电脑的配置&…

初识模版!!

初识模版 1.泛型编程1.1 如何实现一个交换函数呢&#xff08;使得所有数据都可以交换&#xff09;&#xff1f;1.2 那可以不可以让编译器根据不同的类型利用该模子来生成代码呢&#xff1f; 2.模版类型2.1 模版概念2.2 函数模版的原理2.3 函数模板的实例化2.4 模板参数的匹配原…

如何在openEuler上安装和配置openGauss数据库

本文将详细介绍如何在openEuler 22.03 LTS SP1上安装和配置openGauss数据库&#xff0c;包括数据库的启动、停止、远程连接配置等关键步骤。 1、安装 使用OpenEuler-22.03-LTS-SP1-x64版本的系统&#xff0c;通过命令行安装openGauss数据库。 1.1、确保系统软件包索引是最新…

2024最受欢迎的3款|数据库管理和开发|工具

1.SQLynx&#xff08;原SQL Studio&#xff09; 概述&#xff1a; SQLynx是一个原生基于Web的SQL编辑器&#xff0c;由北京麦聪软件有限公司开发。它最初被称为SQL Studio&#xff0c;后改名为SQLynx&#xff0c;支持企业的桌面和Web数据库管理。SQLynx支持所有流行的数据库&a…

lettuce引起的Redis command timeout异常

项目使用Lettuce&#xff0c;在自己的环境下跑是没有问题的。在给客户做售前压测时&#xff0c;因为客户端环境比较恶劣&#xff0c;service服务和中间件服务不在同一机房。服务启动后不一会就会出现Redis command timeout异常。 经过差不多两周的追查&#xff0c;最后没办法把…

Fyne ( go跨平台GUI )中文文档-Fyne总览(二)

本文档注意参考官网(developer.fyne.io/) 编写, 只保留基本用法 go代码展示为Go 1.16 及更高版本, ide为goland2021.2​​​​​​​ 这是一个系列文章&#xff1a; Fyne ( go跨平台GUI )中文文档-入门(一)-CSDN博客 Fyne ( go跨平台GUI )中文文档-Fyne总览(二)-CSDN博客 Fyne…

本地生活商城开发搭建 同城O2O线上线下推广

同城本地化商城目前如火如荼&#xff0c;不少朋友咨询本地生活同城平台怎么开发&#xff0c;今天商淘云与大家分享同城O2O线上商城的设计和开发。 本地生活商城一般会涉及到区域以及频道类&#xff0c;一般下单需要支持用户定位、商家定位&#xff0c;这样利于用户可以快速找到…

Leetcode 反转链表

使用递归 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; }* }*/ class S…

音频3A——初步了解音频3A

文章目录 前言一、3A使用的场景和原理1.AEC2.AGC3.ANS/ANR4.硬件3A和软件3A的区别1&#xff09;层级不同2&#xff09;处理顺序不同3&#xff09;优缺点 5.处理过程 二、3A带来的问题三、开源3A算法总结 前言 在日常的音视频通话过程中&#xff0c;说话的双端往往会面对比较复…

Davinci 大数据可视化分析

Davinci 大数据可视化分析 一、Davinci 架构设计1.1 Davinci定义1.2 Davinci 应用场景 二、Davinci 安装部署2.1 部署规划2.2 前置环境准备2.3 Davinci部署2.3.1 物料准备2.3.2 安装配置 2.4 环境变量配置2.5 初始化数据库2.5.1 创建数据库及用户 2.5.2 建表2.6 初始化配置 三、…

Java反射机制入门:解锁运行时类信息的秘密

反射技术&#xff1a; 其实就是对类进行解剖的技术 类中有什么&#xff1f;构造方法 成员方法成员变量 结论&#xff1a;反射技术就是把一个类进行了解剖&#xff0c;然后获取到 构造方法、成员变量、成员方法 反射技术的应用案例&#xff1a; idea框架技术&#xff1a;Spr…

网络安全-ssrf

目录 一、环境 二、漏洞讲解 三、靶场讲解 四、可利用协议 4.1 dict协议 4.2 file协议 4.3 gopher协议 五、看一道ctf题吧&#xff08;长亭的比赛&#xff09; 5.1环境 5.2开始测试 ​编辑 一、环境 pikachu&#xff0c;这里我直接docker拉取的&#xff0c;我只写原…

基于vue框架的传统文化传播网站设计与实现f7r43(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;用户,文化类型,传统文化 开题报告内容 基于Vue框架的传统文化传播网站设计与实现开题报告 一、研究背景 在全球化加速的今天&#xff0c;各国文化相互交融&#xff0c;但也面临着传统文化被边缘化的风险。中国拥有五千年文明史&#…

【通俗易懂介绍OAuth2.0协议以及4种授权模式】

文章目录 一.OAuth2.0协议介绍二.设计来源于生活三.关于令牌与密码的区别四.应用场景五.接下来分别简单介绍下四种授权模式吧1.客户端模式1.1 介绍1.2 适用场景1.3 时序图 2.密码模式2.1 介绍2.2 适用场景2.3时序图 3.授权码模式3.1 介绍3.2 适用场景3.3 时序图 4.简化模式4.1 …

数据的表示和存储 第3讲 C语言中的整数

深耕AI ​互联网行业 算法研发工程师 概括 本讲主要介绍了C语言中的整数表示。 无符号整数能够表示的最大值比带符号整数要大。带符号整数使用补码来表示&#xff0c;补码的运算系统是一种模运算系统&#xff0c;能够实现加减运算的统一。在C语言中&#xff0c;如果一个表达式…

利用F.interpolate()函数进行插值操作

函数简介 功能&#xff1a; 利用插值方法&#xff0c;对输入的张量数组进行上\下采样操作&#xff0c;换句话说就是科学合理地改变数组的尺寸大小&#xff0c;尽量保持数据完整。 torch.nn.functional.interpolate(input, sizeNone, scale_factorNone, modenearest, align_c…

【赵渝强老师】K8s的DaemonSets控制器

DaemonSet控制器相当于在节点上启动了一个守护进程。通过使用DaemonSet可以确保一个Pod的副本运行在 Node节点上。如果有新的Node节点加入集群&#xff0c;DaemonSet也会自动给新加入的节点增加一个Pod的副本&#xff1b;反之&#xff0c;当有Node节点从集群中移除时&#xff0…