【深度学习】(5)--搭建卷积神经网络

文章目录

  • 搭建卷积神经网络
    • 一、数据预处理
      • 1. 下载数据集
      • 2. 创建DataLoader(数据加载器)
    • 二、搭建神经网络
    • 三、训练数据
    • 四、优化模型
  • 总结

搭建卷积神经网络

一、数据预处理

1. 下载数据集

在PyTorch中,有许多封装了很多与图像相关的模型、数据集,那么如何获取数据集呢?

导入datasets模块:

from torchvision import datasets #封装了很多与图像相关的模型,数据集

以datasets模块中的MNIST数据集为例,包含70000张手写数字图像:60000张用于训练,10000张用于测试。图像是灰度的,28*28像素,并且居中的,以减少预处理和加快运行。

在这里插入图片描述

from torch.utils.data import DataLoader #数据包管理工具,打包数据
from torchvision import datasets #封装了很多与图像相关的模型,数据集
from torchvision.transforms import ToTensor # 数据转换,张量,将其他类型数据转换为tensor张量
"""-----下载训练集数据集-----"""
training_data = datasets.MNIST(
    root="data",
    train=True,# 取训练集
    download=True,
    transform=ToTensor(),# 张量,图片是不能直接传入神经网络模型的
) # 对于pytorch库能够识别的数据,一般是tensor张量

"""-----下载测试集数据集-----"""
test_data = datasets.MNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor(),
)# numpy数组只能在CPU上运行,Tensor可以在GPU上运行,这在深度学习中可以显著提高计算速度

在这里插入图片描述

下载完成之后可在project栏查看。

2. 创建DataLoader(数据加载器)

在PyTorch中,创建DataLoader的主要作用是将数据集(Dataset)加载到模型中,以便进行训练或推理。DataLoader通过封装数据集,提供了一个高效、灵活的方式来处理数据。

DataLoader通过batch_size参数将数据集自动划分为多个小批次(batch),每一批次的放入模型训练,减少内存的使用,提高训练速度。

import torch
from torch.utils.data import DataLoader
"""
创建数据DataLoader(数据加载器)
batch_size:将数据集分成多份,每一份为batch_size(指定数值)个数据。
优点:减少内存的使用,提高训练速度
"""
train_dataloder = DataLoader(training_data,batch_size=64)# 64张图片为一个包
test_datalodar = DataLoader(test_data,batch_size=64)
# 查看打包好的数据
for x,y in test_datalodar: #x是表示打包好的每一个数据包
    print(f"Shape of x [N, C, H, W]:{x.shape}")
    print(f"Shape of y:{y.shape} {y.dtype}")
    break
-----------------------
Shape of x [N, C, H, W]:torch.Size([64, 1, 28, 28])
Shape of y:torch.Size([64]) torch.int64

二、搭建神经网络

在这里插入图片描述

注意:同普通的神经网络不同,卷积神经网络在传入图片时不需要将其展开,因为对图片进行卷积就是在原图上进行内积,不能展开。

卷积神经网络是由输入层、卷积层、激活层、池化层、全连接层、输出层组成。所以在结构上我们也同这样式的来,但是可以搭建多层卷积哦!

"""---判断当前设备是否支持GPU,其中mps是苹果m系列芯片的GPU"""
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"

"""-----定义神经网络-----"""
class CNN(nn.Module):
    def __init__(self): # 输入大小(1,28,28)
        super(CNN,self).__init__()
        self.conv1 = nn.Sequential( # 将多个层组合在一起
            nn.Conv2d(         # 2d一般用于图像,3d用于视频数据(多一个时间维度),1d一般用于结构化的序列数据
                in_channels=1, # 图像通道个数,1表示灰度图(确定卷积核 组中的个数)
                out_channels=16, # 要得到多少特征图,卷积核的个数
                kernel_size=5,  # 卷积核大小
                stride=1,   # 步长
                padding=2   # 边界填充大小
            ), # 输出的特征图为(16,28,28)-->16个大小28*28的图像
            nn.ReLU(), # relu层,不会改变特征图的大小
            nn.MaxPool2d(kernel_size=2) # 进行池化操作(2*2区域),输出结果为(16,14,14)
        )
        self.conv2 = nn.Sequential( # 输入(16,14,14)
            nn.Conv2d(16,32,5,1,2), # 输出(32*14*14)
            nn.ReLU(),
            nn.Conv2d(32,32,5,1,2), # 输出(32*14*14)
            nn.ReLU(),
            nn.MaxPool2d(2) # 输出(32,7,7)
        )
        self.conv3 = nn.Sequential( # 输入(32,7,7)
            nn.Conv2d(32,64,5,1,2), # 输出(64,7,7)
            nn.ReLU()
        )
        self.out = nn.Linear(64*7*7,10)

    def forward(self,x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x) # 输出(64,7,7)
        x = x.view(x.size(0),-1) # flatten 操作,结果为:(batch_size,64*7*7)
        output = self.out(x)
        return output

model = CNN().to(device)

三、训练数据

  • optimizer优化器
optimizer = torch.optim.Adam(model.parameters(),lr=0.001)
  • loss_fn损失函数

在PyTorch中,**nn.CrossEntropyLoss()**是一个常用的损失函数,它结合了 nn.LogSoftmax()nn.NLLLoss()(负对数似然损失)在一个单独的类中。

loss_fn = nn.CrossEntropyLoss()
  • 训练集
from torch import nn #导入神经网络模块
def train(dataloader,model,loss_fn,optimizer):
    model.train()# 设置模型为训练模式

    batch_size_num =1# 迭代次数 
    for x,y in dataloader:
        x,y = x.to(device),y.to(device)  # 将数据和标签发送到指定设备  
        pred = model.forward(x)  # 前向传播  
        loss = loss_fn(pred,y)  # 计算损失  

        optimizer.zero_grad()  # 清除之前的梯度  
        loss.backward()  # 反向传播  
        optimizer.step()  # 更新模型参数  

        loss_value = loss.item()  # 获取损失值
        if batch_size_num %200 == 0:  # 每200次迭代打印一次损失  
            print(f"loss:{loss_value:>7f} [number:{batch_size_num}]")
        batch_size_num += 1
train(train_dataloder,model,loss_fn,optimizer)
------------------------
loss:0.158841 [number:200]
loss:0.242431 [number:400]
loss:0.173504 [number:600]
loss:0.020542 [number:800]
  • 测试集
"""-----测试集-----"""
def test(dataloader,model,loss_fn):
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    model.eval()
    test_loss,correct = 0,0
    with torch.no_grad():
        for x,y in dataloader:
            x,y = x.to(device),y.to(device)
            pred = model.forward(x)
            test_loss += loss_fn(pred,y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()
            a = (pred.argmax(1) == y)
            b = (pred.argmax(1) == y).type(torch.float)
    test_loss /= num_batches
    correct /= size
    correct = round(correct, 4)
    print(f"Test result: \n Accuracy:{(100*correct)}%,Avg loss:{test_loss}")

test(test_datalodar,model,loss_fn)
--------------------
Test result: 
 Accuracy:98.11999999999999%,Avg loss:0.05511626677004996

四、优化模型

通过多次迭代,神经网络不断调整其内部参数(如权重和偏置),以最小化预测值与实际值之间的误差。这种优化过程使得神经网络能够更准确地处理输入数据,提高分类、回归等任务的性能。

epochs = 5
for t in range(epochs):
    print(f"Epoch {t+1} \n-------------------------")
    train(train_dataloder,model,loss_fn,optimizer)
print("Done!")
test(test_datalodar,model,loss_fn)

输出结果:

Epoch 1 
-------------------------
loss:0.182339 [number:200]
loss:0.229839 [number:400]
loss:0.210450 [number:600]
loss:0.028532 [number:800]
Epoch 2 
-------------------------
loss:0.066216 [number:200]
loss:0.149762 [number:400]
loss:0.084482 [number:600]
loss:0.003749 [number:800]
…………
Done!
Test result: 
 Accuracy:98.99%,Avg loss:0.03138259953491878

总结

本篇介绍了如何搭建卷积神经网络,其主要的构造部分为卷积层、激活层以及池化层,可以搭建多层该部分对数据进行多次卷积、池化。
注意:同普通的神经网络不同,卷积神经网络在传入图片时不需要将其展开,因为对图片进行卷积就是在原图上进行内积,不能展开。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/882093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java/Spring项目的包开头为什么是com?

Java/Spring项目的包开头为什么是com? 下面是一个使用Maven构建的项目初始结构 src/main/java/ --> Java 源代码com.example/ --->为什么这里是com开头resources/ --> 资源文件 (配置、静态文件等)test/java/ --> 测试代码resourc…

Visual Studio-X64汇编编写

纯64位汇编: includelib ucrt.lib includelib legacy_stdio_definitions.lib includelib user32.libextern printf:proc extern MessageBoxA:proc.data szFormat db "%s",0 szHello db "HelloWorld",0 szRk db "123",0.code start p…

无线安全(WiFi)

免责声明:本文仅做分享!!! 目录 WEP简介 WPA简介 安全类型 密钥交换 PMK PTK 4次握手 WPA攻击原理 网卡选购 攻击姿态 1-暴力破解 脚本工具 字典 2-Airgeddon 破解 3-KRACK漏洞 4-Rough AP 攻击 5-wifi钓鱼 6-wifite 其他 WEP简介 WEP是WiredEquivalentPri…

百度智能云API调用

植物识别API import base64 import urllib import requestsAPI_KEY "你的图像识别API_KEY" SECRET_KEY "你的图像识别SECRET_KEY"def main():url "https://aip.baidubce.com/rest/2.0/image-classify/v1/plant?access_token" get_access_t…

24/9/19 算法笔记 kaggle BankChurn数据分类

题目是要预测银行里什么样的客户会流失,流失的概率是多少 我这边先展示一下我写的二分类的算法 import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.linear_model impo…

60.【C语言】内存函数(memset,memcmp函数)

3.memset函数(常用) *简单使用 memset:memory set cplusplus的介绍 点我跳转 翻译: 函数 memset void * memset ( void * ptr, int value, size_t num ); 填充内存块 将ptr指向的内存块的前num个字节设置为指定值(解释为无符号char)。 (指针ptr类型为…

qt-C++笔记之作用等同的宏和关键字

qt-C笔记之作用等同的宏和关键字 code review! Q_SLOT 和 slots: Q_SLOT是slots的替代宏,用于声明槽函数。 Q_SIGNAL 和 signals: Q_SIGNAL类似于signals,用于声明信号。 Q_EMIT 和 emit: Q_EMIT 是 Qt 中用于发射…

【Linux】Linux的基本指令(1)

A clown is always a clown.💓💓💓 目录 ✨说在前面 🍋知识点一:Linux的背景 •🌰1.Unix发展的历史 •🌰2.Linux发展历史 •🌰3.企业应用现状 •🌰4.发行版本 &…

jmeter得到的文档数据处理

通过前面jmeter得到的输出文档,这里是txt文档,里面包含了很多条数据,每条数据的结构如下: 【request】 uuid:xxxxxxx timestamp:xxxxxxxx No.x question:xxxxxxx 【response】 code&#…

windows cuda12.1 pytorch gpu环境配置

安装cuda12.1 nvcc -V conda创建pythong3.10环境 conda create -n llama3_env python3.10 conda activate llama3_env 安装pytorch conda install pytorch torchvision torchaudio pytorch-cuda11.8 -c pytorch -c nvidia gpu - Pytorch version for cuda 12.2 - Stack Ov…

传输层 IV(TCP协议——流量控制、拥塞控制)【★★★★】

(★★)代表非常重要的知识点,(★)代表重要的知识点。 一、TCP 流量控制(★★) 1. 利用滑动窗口实现流量控制 一般说来,我们总是希望数据传输得更快一些。但如果发送方把数据发送得…

powerbi -L10-文件夹内的文件名

powerbi -L10-文件夹内的文件名 Folder.Contents letSource Folder.Contents("\\your_folder\ your_folder "),#"Removed Other Columns" Table.SelectColumns(Source,{"Name", "Date modified", "Folder Path"}), in#&q…

STM32篇:通用输入输出端口GPIO

一.什么是GPIO? 1.定义 GPIO是通用输入输出端口的简称,简单来说就是STM32可控制的引脚STM32芯片的GPIO引脚与 外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。 简单来说我们可以控制GPIO引脚的电平变化,达到我们的各种目的…

MQ(RabbitMQ)笔记

初识MQ 同步调用优缺点 异步调用优缺点 总结: 时效性要求高,需要立刻得到结果进行处理--->同步调用 对调用结果不关心,对性能要求高,响应时间短--->异步调用

花园管理系统

基于springbootvue实现的花园管理系统 (源码L文ppt)4-074 4功能结构 为了更好的去理清本系统整体思路,对该系统以结构图的形式表达出来,设计实现该“花开富贵”花园管理系统的功能结构图如下所示: 图4-1 系统总体结…

植物大战僵尸【源代码分享+核心思路讲解】

植物大战僵尸已经正式完结,今天和大家分享一下,话不多说,直接上链接!!!(如果大家在运行这个游戏遇到了问题或者bug,那么请私我谢谢) 大家写的时候可以参考一下我的代码思…

Nginx反向代理出现502 Bad Gateway问题的解决方案

🎉 前言 前一阵子写了一篇“关于解决调用百度翻译API问题”的博客,近日在调用其他API时又遇到一些棘手的问题,于是写下这篇博客作为记录。 🎉 问题描述 在代理的遇到过很多错误码,其中出现频率最高的就是502&#x…

75、Python之函数式编程:生成器的核心方法及更多使用场景

引言 Python中的函数式编程,依托生成器,可以实现惰性求值的特性。但是,生成器其实还可以有更多的使用场景。本文就聚焦生成器,再次聊聊生成器中的主要方法以及更多的使用场景。 本文的主要内容有: 1、生成器的核心方…

解决DockerDesktop启动redis后采用PowerShell终端操作

如图: 在启动redis容器后,会计入以下界面 : 在进入执行界面后如图: 是否会觉得界面过于单调,于是想到使用PowerShell来操作。 步骤如下: 这样就能使用PowerShell愉快地敲命令了(颜值是第一生…

SVM原理

SVM 这里由于过了很长时间 博主当时因为兴趣了解了下 博主现在把以前的知识放到博客上 作为以前的学习的一个结束 这些东西来自其他资料上 小伙伴看不懂英文的自行去翻译下吧 博主就偷个懒了 多维空间和低维空间 不一样的分法,将数据映射到高维 &…