【数学分析笔记】第3章第2节 连续函数(4)

3. 函数极限与连续函数

3.2 连续函数

3.2.9 反函数的连续性定理

【定理3.2.2】【反函数连续性定理】设 y = f ( x ) y=f(x) y=f(x)在闭区间 [ a , b ] [a,b] [a,b]上连续且严格单调增加,设 f ( a ) = α , f ( b ) = β f(a)=\alpha,f(b)=\beta f(a)=α,f(b)=β,则反函数 f − 1 ( y ) f^{-1}(y) f1(y) [ α , β ] [\alpha,\beta] [α,β]上连续。
【证】先证 f f f的值域是 [ α , β ] [\alpha,\beta] [α,β]
∀ γ ∈ ( α , β ) \forall \gamma\in(\alpha,\beta) γ(α,β),集合 S = { x ∣ x ∈ [ a , b ] , f ( x ) < γ } \textbf{S}=\{x|x\in[a,b],f(x)<\gamma\} S={xx[a,b],f(x)<γ},则令 S \textbf{S} S的上确界为 x 0 x_{0} x0,当 x < x 0 , f ( x ) < γ x<x_{0},f(x)<\gamma x<x0,f(x)<γ(单调增加),当 x > x 0 , f ( x ) > γ x>x_{0},f(x)>\gamma x>x0,f(x)>γ
lim ⁡ x → x 0 − f ( x ) ≤ γ \lim\limits_{x\to x_{0}^{-}}f(x)\le\gamma xx0limf(x)γ(单调函数的单侧极限一定存在)
lim ⁡ x → x 0 + f ( x ) ≥ γ \lim\limits_{x\to x_{0}^{+}}f(x)\ge\gamma xx0+limf(x)γ
由于 f ( x ) f(x) f(x) x 0 x_{0} x0点连续,所以 lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_{0}^{-}}f(x)=\lim\limits_{x\to x_{0}^{+}}f(x)=f(x_{0}) xx0limf(x)=xx0+limf(x)=f(x0)
所以 γ = f ( x 0 ) ∈ ( α , β ) \gamma=f(x_{0})\in(\alpha,\beta) γ=f(x0)(α,β)
∀ x ∈ ( a , b ) : f ( x ) ∈ ( α , β ) \forall x\in(a,b):f(x)\in(\alpha,\beta) x(a,b):f(x)(α,β)
f ( a ) = α , f ( b ) = β f(a)=\alpha,f(b)=\beta f(a)=α,f(b)=β,所以 f ( x ) f(x) f(x)的值域是 [ a , b ] [a,b] [a,b]
∀ y 0 ∈ ( α , β ) \forall y_{0}\in(\alpha,\beta) y0(α,β),要证 f − 1 f^{-1} f1 y 0 y_{0} y0连续
y = α y=\alpha y=α,证 f − 1 f^{-1} f1 α \alpha α右连续
y = β y=\beta y=β,证 f − 1 f^{-1} f1 β \beta β左连续

f ( x 0 ) = y 0 , ( f − 1 ( y 0 ) = x 0 ) f(x_{0})=y_{0},(f^{-1}(y_{0})=x_{0}) f(x0)=y0,(f1(y0)=x0)
∀ ε > 0 \forall \varepsilon>0 ε>0,找 δ > 0 , ∀ y ( ∣ y − y 0 ∣ < δ ) : ∣ f − 1 ( y ) − f − 1 ( y 0 ) ∣ ⇔ ∣ x − x 0 ∣ < ε \delta>0,\forall y(|y-y_{0}|<\delta):|f^{-1}(y)-f^{-1}(y_{0})|\Leftrightarrow |x-x_{0}|<\varepsilon δ>0,y(yy0<δ):f1(y)f1(y0)xx0<ε,取 δ = min ⁡ { y 0 − y 1 , y 2 − y 0 } \delta=\min\{y_{0}-y_{1},y_{2}-y_{0}\} δ=min{y0y1,y2y0},当 ∣ y − y 0 ∣ < δ |y-y_{0}|<\delta yy0<δ时,有 ∣ x − x 0 ∣ < ε |x-x_{0}|<\varepsilon xx0<ε,所以区间连续
对于左侧端点,找 δ 1 > 0 , ∀ y ( ∣ y − f ( a ) ∣ = ∣ y − α ∣ < δ 1 ) : ∣ f − 1 ( y ) − f − 1 ( α ) ∣ = ∣ f − 1 ( y ) − a ∣ ⇔ ∣ x − a ∣ < ε \delta_{1}>0,\forall y(|y-f(a)|=|y-\alpha|<\delta_{1}):|f^{-1}(y)-f^{-1}(\alpha)|=|f^{-1}(y)-a|\Leftrightarrow|x-a|<\varepsilon δ1>0,y(yf(a)=yα<δ1):f1(y)f1(α)=f1(y)axa<ε,取 δ 1 = min ⁡ { f ( a + ε ) − f ( a ) } \delta_{1}=\min\{f(a+\varepsilon)-f(a)\} δ1=min{f(a+ε)f(a)},当 ∣ y − α ∣ < δ |y-\alpha|<\delta yα<δ时,有 ∣ x − a ∣ < ε |x-a|<\varepsilon xa<ε,所以左端点连续
同理右端点连续。(后边证明端点连续是自己想的,欢迎数院大神批评指正)


【例】 y = sin ⁡ x , x ∈ [ − π 2 , π 2 ] , y ∈ [ − 1 , 1 ] y=\sin x,x\in[-\frac{\pi}{2},\frac{\pi}{2}],y\in[-1,1] y=sinxx[2π,2π],y[1,1],反函数为 y = arcsin ⁡ x , D = [ − 1 , 1 ] , R = [ − π 2 , π 2 ] y=\arcsin x,\textbf{D}=[-1,1],\textbf{R}=[-\frac{\pi}{2},\frac{\pi}{2}] y=arcsinx,D=[1,1],R=[2π,2π],所以 y = arcsin ⁡ x y=\arcsin x y=arcsinx [ − 1 , 1 ] [-1,1] [1,1]不仅连续,且严格单调增加。



【例3.2.9】 y = cos ⁡ x y=\cos x y=cosx,它的反函数是 y = arccos ⁡ x y=\arccos x y=arccosx D = [ − 1 , 1 ] , R = [ 0 , π ] \textbf{D}=[-1,1],\textbf{R}=[0,\pi] D=[1,1],R=[0,π]
y = tan ⁡ x y=\tan x y=tanx,它的反函数是 y = arctan ⁡ x , D = ( − ∞ , + ∞ ) , R = ( − π 2 , π 2 ) y=\arctan x,\textbf{D}=(-\infty,+\infty),\textbf{R}=(-\frac{\pi}{2},\frac{\pi}{2}) y=arctanx,D=(,+),R=(2π,2π)



【例3.2.10】 y = a x , ( a > 0 , a ≠ 1 ) y=a^{x},(a>0,a\ne 1) y=ax,(a>0,a=1),它的反函数是 y = log ⁡ a x , D = ( 0 , + ∞ ) , R = ( − ∞ , + ∞ ) y=\log_{a} x,\textbf{D}=(0,+\infty),\textbf{R}=(-\infty,+\infty) y=logax,D=(0,+),R=(,+)

【注】三角函数,反三角函数,指数函数,对数函数, y = x n , n ∈ Z , y = x α = e ln ⁡ x α = e α ln ⁡ x y=x^{n},n\in\mathbb{Z},y=x^{\alpha}=e^{\ln x^{\alpha}}=e^{\alpha\ln x} y=xn,nZ,y=xα=elnxα=eαlnx等……的复合函数都是在其定义域上连续

3.2.10 复合函数的连续性

问题: lim ⁡ u → u 0 f ( x ) = A , lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits_{u\to u_{0}}f(x)=A,\lim\limits_{x\to x_{0}}g(x)=u_{0} uu0limf(x)=A,xx0limg(x)=u0,问 lim ⁡ x → x 0 f ∘ g ( x ) = A \lim\limits_{x\to x_{0}}f\circ g(x)=A xx0limfg(x)=A是否成立,实际上是错误的,反例: f ( u ) = { 0 , u = 0 1 u ≠ 0 , g ( x ) = x sin ⁡ 1 x f(u)=\left\{\begin{matrix} 0&,u=0 \\ 1&u\ne 0 \end{matrix}\right.,g(x)=x\sin \frac{1}{x} f(u)={01,u=0u=0,g(x)=xsinx1
lim ⁡ x → 0 g ( x ) = 0 \lim\limits_{x\to 0}g(x)=0 x0limg(x)=0 f ∘ g ( x ) = { 0 , x = 1 n π 1 x ≠ 1 n π f\circ g(x)=\left\{\begin{matrix} 0&,x=\frac{1}{n\pi} \\ 1&x\ne\frac{1}{n\pi} \end{matrix}\right. fg(x)={01,x=1x=1
x → 0 x\to 0 x0,取 x n ′ = 1 n π ≠ 0 x_{n}'=\frac{1}{n\pi}\ne 0 xn=1=0,但 lim ⁡ n → ∞ x n ′ = 0 \lim\limits_{n\to\infty}x_{n}'=0 nlimxn=0,则 lim ⁡ n → ∞ f ∘ g ( x n ′ ) ) = 0 \lim\limits_{n\to\infty}f\circ g(x_{n}'))=0 nlimfg(xn))=0,取 x n ′ ′ = 1 n π , x n ′ ′ ≠ 0 , x n ′ ′ → 0 , lim ⁡ n → ∞ f ∘ g ( x n ′ ′ ) = 1 x_{n}''=\frac{1}{n\pi},x_{n}''\ne0,x_{n}''\to 0,\lim\limits_{n\to\infty}f\circ g(x_{n}'')=1 xn′′=1,xn′′=0,xn′′0,nlimfg(xn′′)=1
由海涅定理, lim ⁡ x → 0 f ∘ g ( x ) \lim\limits_{x\to 0}f\circ g(x) x0limfg(x)不存在。
【注】这个函数0这一点不连续。 ∘ \circ 是复合函数的符号。


【定理3.2.3】 u = g ( x ) u=g(x) u=g(x) x 0 x_{0} x0连续, g ( x 0 ) = u 0 g(x_{0})=u_{0} g(x0)=u0 f ( u ) f(u) f(u) u 0 u_{0} u0连续,则 f ∘ g f\circ g fg x 0 x_{0} x0连续。
也即 lim ⁡ x → x 0 g ( x ) = u 0 , lim ⁡ u → u 0 f ( x ) = f ( u 0 ) \lim\limits_{x\to x_{0}}g(x)=u_{0},\lim\limits_{u\to u_{0}}f(x)=f(u_{0}) xx0limg(x)=u0,uu0limf(x)=f(u0),则 lim ⁡ x → x 0 f ∘ g ( x ) = f ∘ g ( x 0 ) = f ( u 0 ) \lim\limits_{x\to x_{0}}f\circ g(x)=f\circ g(x_{0})=f(u_{0}) xx0limfg(x)=fg(x0)=f(u0)
【证】 ε > 0 , ∃ η > 0 , ∀ u ( ∣ u − u 0 ∣ < η ) : ∣ f ( u ) − f ( u 0 ) ∣ < ε \varepsilon>0,\exists\eta>0,\forall u(|u-u_{0}|<\eta):|f(u)-f(u_{0})|<\varepsilon ε>0,η>0,u(uu0<η):f(u)f(u0)<ε
对上述 η > 0 , ∃ δ > 0 , ∀ x ( ∣ x − x 0 ∣ < δ ) : ∣ g ( x ) − g ( x 0 ) ∣ < η \eta>0,\exists\delta>0,\forall x(|x-x_{0}|<\delta):|g(x)-g(x_{0})|<\eta η>0,δ>0,x(xx0<δ):g(x)g(x0)<η
由于 g ( x 0 ) = u 0 g(x_{0})=u_{0} g(x0)=u0 ∣ g ( x ) − u 0 ∣ < η |g(x)-u_{0}|<\eta g(x)u0<η
所以 ∣ f ∘ g ( x ) − f ∘ g ( x 0 ) ∣ = ∣ f ∘ g ( x ) − f ( u 0 ) ∣ < ε \left|f \circ g(x)-f \circ g\left(x_{0}\right)\right|=\left|f \circ g(x)-f\left(u_{0}\right)\right|<\varepsilon fg(x)fg(x0)=fg(x)f(u0)<ε
lim ⁡ x → x 0 f ∘ g ( x ) = f ∘ g ( x 0 ) \lim\limits_{x \rightarrow x_{0}} f \circ g(x)=f \circ g\left(x_{0}\right) xx0limfg(x)=fg(x0)

【例3.2.10】 sh ⁡ x = e x − e − x 2 , ch ⁡ x = e x + e − x 2 \sh x=\frac{e^{x}-e^{-x}}{2},\ch x=\frac{e^{x}+e^{-x}}{2} shx=2exex,chx=2ex+ex(双曲正弦函数,双曲余弦函数),这两个函数是复合函数,比如 sh ⁡ x = e x − e − x 2 \sh x=\frac{e^{x}-e^{-x}}{2} shx=2exex可以写成 y = u + u − 1 2 , u = e x y=\frac{u+u^{-1}}{2},u=e^{x} y=2u+u1,u=ex u u u的值域是 u > 0 u>0 u>0,所以它复合后的结果也是连续的,所以 sh ⁡ x , ch ⁡ x \sh x,\ch x shx,chx ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)连续。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/880917.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

web基础之RCE

简介&#xff1a;RCE称为远程代码执行漏洞&#xff1b;是互联网的一种安全漏洞&#xff1b;攻击者可以直接向后台服务器远程注入操作系统命令&#xff1b;从而操控后台系统&#xff1b;也是CTF比较常考的一个方面 1、eval执行 &#xff08;1&#xff09;分析后端代码&#xf…

[数据集][目标检测]无人机识别检测数据集VOC+YOLO格式6986张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;6986 标注数量(xml文件个数)&#xff1a;6986 标注数量(txt文件个数)&#xff1a;6986 标注…

物流管理系统小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;员工管理&#xff0c;部门管理&#xff0c;物品分类管理&#xff0c;物流公司管理&#xff0c;物流信息管理&#xff0c;配送信息管理 微信端账号功能包括&#xff1a;系统首页&a…

Mybatis 快速入门(maven)

文章目录 需求建表新建了数据库但是navicat界面没有显示 新建maven项目 注意导入依赖 总结 黑马学习笔记 需求 建表 注意&#xff1a;设置字符集 减少出错 drop database mybatis; create database mybatis charset utf8; use mybatis;drop table if exists tb_user;create…

如何使用MyJWT测试你的JWT是否存在安全问题

关于MyJWT MyJWT是一款针对JSON Web Token&#xff08;JWT&#xff09;的安全检测工具&#xff0c;该工具适用于渗透测试人员、CTF 玩家或开发人员&#xff0c;可以快速针对JWT执行安全扫描与检测。 功能介绍 1、支持将新的 jwt 复制到剪贴板&#xff1b; 2、用户界面&#xf…

人脸活体检测系统源码分享

人脸活体检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

Electron-vue asar 局部打包优化处理方案——绕开每次npm run build 超级慢的打包问题

背景 因为组员对于 Electron 打包过程存在比较迷糊的状态&#xff0c;且自己也没主动探索 Electron-vue 打包细节&#xff0c;导致每次打包过程都消耗 5-6 分钟的时间&#xff0c;在需要测试生产打包时&#xff0c;极其浪费时间&#xff0c;为此针对 Electron-vue 打包的几个环…

快手可灵AI全球升级1.5模型:引入“运动笔刷”功能 画质大幅提升

9月19日&#xff0c;快手公司宣布其可灵AI模型进行了全球范围内的重磅升级&#xff0c;推出了1.5版本。新版本在多个方面实现了显著提升&#xff0c;包括视频画质、动态效果、美学表现、运动合理性以及语义理解等。 新升级的1.5模型支持在高品质模式下直接输出1080p高清视频&am…

【笔记】2.1 半导体三极管(BJT,Bipolar Junction Transistor)

一、结构和符号 1. 三极管结构 常用的三极管的结构有硅平面管和锗合金管两种类型。各有PNP型和NPN型两种结构。 左图是NPN型硅平面三极管,右图是PNP型锗合金三极管。 从图中可见平面型三极管是先在一块大的金属板上注入杂质使之变成N型,然后再在中间注入杂质使之变成P型,…

Unity携程Coroutine用法

一.携程概述 官方的解释是&#xff0c;携程允许你可以在多个帧中执行任务。在Unity中&#xff0c;携程是一个可以暂停并在后续帧中从暂停处继续执行的方法。 二.携程写法 下面示例使用携程和Update打印前5帧的时间间隔&#xff0c;展示了携程的基础写法 using System.Colle…

[数据集][目标检测]不同颜色的安全帽检测数据集VOC+YOLO格式7574张5类别

重要说明&#xff1a;数据集里面有2/3是增强数据集&#xff0c;请仔细查看图片预览&#xff0c;确认符合要求在下载&#xff0c;分辨率均为640x640 数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件…

使用Rust直接编译单个的Solidity合约

这里写自定义目录标题 使用Rust直接编译单个的Solidity合约前言预备知识准备工作示例 使用Rust直接编译单个的Solidity合约 前言 我们知道&#xff0c;我们平常开发Solidity智能合约时一般使用Hardhat框架&#xff0c;但是如果你是一个Rustacean (这是由 “Rust” 和 “crust…

C++速通LeetCode中等第3题-盛最多水的容器

双指针法&#xff1a;两个指针分别指向左右边界&#xff0c;记录最大面积&#xff0c;由于面积由短板决定&#xff0c;两个指针中较短的短指针向内移动一格&#xff0c;再次记录最大面积&#xff0c; 直到两指针相遇&#xff0c;得出答案。 class Solution { public:int maxAr…

Qt与Udp

(1)绑定端口 (2)广播 用udp实现广播通信_udp广播-CSDN博客 数据的发送是面向整个子网的&#xff0c;任何一台在子网中的计算机都可以接收到相同的数据。 如果一台机器希望向其他N台机器发送信息&#xff0c;这时候可以使用UDP的广播。 --------------- 广播地址&#xff1…

微服务_入门1

文章目录 一、 认识微服务二、 微服务演变2.1、 单体架构2.2、 分布式架构2.3、 微服务2.4、 微服务方案对比 三、 注册中心3.1、 Eureka3.2、 Nacos3.2.1、服务分级存储模型3.2.2、权重配置3.2.3、环境隔离 一、 认识微服务 二、 微服务演变 随着互联网行业的发展&#xff0c;…

【题解】CF1983E

翻译 原题链接 分析 显然&#xff0c;两人得分总和等于所有球的分数之和&#xff0c;所以我们只需要研究一个人即可&#xff0c;这里我们考虑Alice。 分析哪些球会被Alice拿走。我们称前 k k k个球为 1 1 1&#xff0c;其他球为 0 0 0。然后把一个 0 0 0和与前一个 0 0 0之间…

U 盘显示需要格式化才能用?一针见血的修复方法在这里!速看!

在日常使用电脑的过程中&#xff0c;我们常常会遇到各种让人头疼的问题&#xff0c;其中之一就是当插入 U 盘时&#xff0c;突然弹出提示 “U 盘需要格式化才能使用”。这可让很多人慌了神&#xff0c;毕竟 U 盘里可能存储着重要的文件资料。别着急&#xff0c;下面就为大家介绍…

【QT】系统-上

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;折纸花满衣 &#x1f3e0;个人专栏&#xff1a;QT 目录 &#x1f449;&#x1f3fb;事件QWidget中常见的事件 &#x1f449;&#x1f3fb;处理鼠标事件&#xff1a;leaveEvent和enterEvent&#x1f449;&a…

API接口什么意思?电商API接口有什么作用

API接口简介&#xff1a; 从技术层面上来看&#xff0c;API是一系列函数、协议和工具&#xff0c;它们定义了软件组件如何交互&#xff0c;让开发者无需了解对方内部工作原理就可以使用对方的功能或服务。 事实上&#xff0c;API接口在电商行业中的应用较为广泛。 具体来看&…

Msf之Python分离免杀

Msf之Python分离免杀 ——XyLin. 成果展示&#xff1a; VT查杀率:8/73 (virustotal.com) 火绒和360可以过掉&#xff0c;但Windows Defender点开就寄掉了 提示&#xff1a;我用360测的时候&#xff0c;免杀过了&#xff0c;但360同时也申报了&#xff0c;估计要不了多久就寄…