边写代码边学习之Bidirectional LSTM

1.  什么是Bidirectional  LSTM

双向 LSTM (BiLSTM) 是一种主要用于自然语言处理的循环神经网络。 与标准 LSTM 不同,输入是双向流动的,并且它能够利用双方的信息。 它也是一个强大的工具,可以在序列的两个方向上对单词和短语之间的顺序依赖关系进行建模。

综上所述,BiLSTM 又增加了一层 LSTM,从而反转了信息流的方向。 简而言之,这意味着输入序列在附加的 LSTM 层中向后流动。 然后,我们以多种方式组合两个 LSTM 层的输出,例如平均、求和、乘法或串联。

为了说明这一点,展开的 BiLSTM 如下图所示:

这种类型的架构在现实世界的问题中具有许多优势,尤其是在 NLP 中。 主要原因是输入序列的每个组成部分都包含来自过去和现在的信息。 因此,BiLSTM 可以通过组合两个方向的 LSTM 层来产生更有意义的输出。

例如这句话:

Apple is something that…

可能是关于苹果作为水果或关于苹果公司。 因此,LSTM 不知道“Apple”是什么意思,因为它不知道未来的上下文。

相反,最有可能在这两个句子中:

Apple is something that competitors simply cannot reproduce.

Apple is something that I like to eat.

BiLSTM 对于序列(句子)的每个组成部分(单词)都会有不同的输出。 因此,BiLSTM 模型在一些 NLP 任务中是有益的,例如句子分类(sentence classification)、翻译(translation)和实体识别(entity recognition)。 此外,它还应用于语音识别(speech recognition)、蛋白质结构预测(protein structure prediction)、手写识别(handwritten recognition)和类似领域。

最后,关于 BiLSTM 与 LSTM 相比的缺点,值得一提的是 BiLSTM 是一个速度慢得多的模型,并且需要更多的训练时间。 因此,建议仅在确实有必要时才使用它。

2. 实验代码

2.1. Bidirectional layer 方法介绍

tf.keras.layers.Bidirectional(
    layer, merge_mode="concat", weights=None, backward_layer=None, **kwargs
)

参数

layer:keras.layers.RNN实例,例如keras.layers.LSTM或keras.layers.GRU。 它也可以是满足以下条件的 keras.layers.Layer 实例:
成为序列处理层(接受 3D+ 输入)。
有一个 go_backwards、return_sequences 和 return_state 属性(与 RNN 类具有相同的语义)。
有一个 input_spec 属性。
通过 get_config() 和 from_config() 实现序列化。 请注意,创建新 RNN 层的推荐方法是编写自定义 RNN 单元并将其与 keras.layers.RNN 一起使用,而不是直接子类化 keras.layers.Layer。 - 当 returns_sequences 为 true 时,无论该层的原始 Zero_output_for_mask 值如何,屏蔽时间步长的输出都将为零。
merge_mode:组合前向和后向 RNN 输出的模式。 {'sum'、'mul'、'concat'、'ave'、None} 之一。 如果没有,输出将不会被组合,它们将作为列表返回。 默认值为“concat”。
back_layer:可选的 keras.layers.RNN 或 keras.layers.Layer 实例,用于处理向后输入处理。 如果未提供backward_layer,则作为层参数传递的层实例将用于自动生成后向层。 请注意,提供的backward_layer层应具有与layer参数相匹配的属性,特别是它应具有相同的stateful、return_states、return_sequences等值。此外,backward_layer和layer应具有不同的go_backwards参数值。 如果不满足这些要求,将会引发 ValueError。

2.2. 搭建一个只有一层LSTM和Dense网络的模型。

def simple_lstm_layer():
    # Create a dense layer with 10 output neurons and input shape of (None, 20)
    model = Sequential()
    model.add(Bidirectional(LSTM(3, return_sequences=True), input_shape=(3, 2)))
    model.add(Dense(1))  # Output layer with one neuron
    print(model.summary())
if __name__ == '__main__':
    simple_lstm_layer()

输出

Model: "sequential"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 bidirectional (Bidirectiona  (None, 3, 6)             144       
 l)                                                              
                                                                 
 dense (Dense)               (None, 3, 1)              7         
                                                                 
=================================================================
Total params: 151
Trainable params: 151
Non-trainable params: 0
_________________________________________________________________
None

2.3. 验证Bidirectional  LSTM里的逻辑

 假设我的输入数据是x = [1,0], 

forward_kernel = [[[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],

              [1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],]]

forward_recurrent_kernel = [[1, 0, 0, 1, 2,1,0,1,2,0,1,0],

                              [1, 1, 0, 0, 2,1,0,1,2,2,0,0],

                              [1, 0, 1, 2, 0,1,0,1,1,0,1,0]]

forward_biase = [3, 1, 0, 1, 1,0,0,1,0,2,0.0,0]

backward_kernel = [[[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],

              [1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],]]

backward_recurrent_kernel = [[1, 0, 0, 1, 2,1,0,1,2,0,1,0],

                              [1, 1, 0, 0, 2,1,0,1,2,2,0,0],

                              [1, 0, 1, 2, 0,1,0,1,1,0,1,0]]

backward_biase = [3, 1, 0, 1, 1,0,0,1,0,2,0.0,0]

通过下面手算,输出: [[[0. 4. 0. 0. 4. 0.]]],  forward/backward  memory_state的结果是[[0. 4. 0.]], forward/backward carry_state 的结果是 [[0. 4. 1.]].  注意无激活函数。

 代码验证上面的结果

def change_weight():
    # Create a simple Bidirectional LSTM layer
    lstm_layer = LSTM(units=3, input_shape=(3, 2), activation=None, recurrent_activation=None, return_sequences=True,
                      return_state= True)

    bi_lstm_layer = Bidirectional(lstm_layer, merge_mode='concat')

    # Simulate input data (batch size of 1 for demonstration)
    input_data = np.array([
                [[1.0, 2], [2, 3], [3, 4]],
                [[5, 6], [6, 7], [7, 8]],
                [[9, 10], [10, 11], [11, 12]]
        ])

    # Pass the input data through the layer to initialize the weights and biases
    bi_lstm_layer(input_data)

    kernel = np.array([[2, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0],
                       [1, 1, 0, 1, 1, 0, 0, 1, 1 ,0, 0, 0],])

    recurrent_kernel = np.array([[1, 0, 0, 1, 2,1,0,1,2,0,1,0],
                                 [1, 1, 0, 0, 2,1,0,1,2,2,0,0],
                                 [1, 0, 1, 2, 0,1,0,1,1,0,1,0]])

    biases = np.array([3, 1, 0, 1, 1,0,0,1,0,2,0.0,0])

    bi_lstm_layer.set_weights([kernel, recurrent_kernel, biases, kernel, recurrent_kernel, biases])
    print(bi_lstm_layer.get_weights())

    test_data = np.array([
        [[1,0.0]]
    ])

    output, memory_state, carry_state, backward_memory_state, backward_carry_state  = bi_lstm_layer(test_data)

    print('output = ',output.numpy())
    print('forward memory_state = ', memory_state.numpy())
    print('forward carry_state = ',carry_state.numpy())
    print('backward memory state = ', backward_memory_state.numpy())
    print('backward carry state = ',backward_carry_state.numpy())

if __name__ == '__main__':
    change_weight()

输出

[array([[2., 1., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0.],
       [1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0.]], dtype=float32), array([[1., 0., 0., 1., 2., 1., 0., 1., 2., 0., 1., 0.],
       [1., 1., 0., 0., 2., 1., 0., 1., 2., 2., 0., 0.],
       [1., 0., 1., 2., 0., 1., 0., 1., 1., 0., 1., 0.]], dtype=float32), array([3., 1., 0., 1., 1., 0., 0., 1., 0., 2., 0., 0.], dtype=float32), array([[2., 1., 1., 0., 0., 0., 0., 1., 1., 0., 1., 0.],
       [1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0.]], dtype=float32), array([[1., 0., 0., 1., 2., 1., 0., 1., 2., 0., 1., 0.],
       [1., 1., 0., 0., 2., 1., 0., 1., 2., 2., 0., 0.],
       [1., 0., 1., 2., 0., 1., 0., 1., 1., 0., 1., 0.]], dtype=float32), array([3., 1., 0., 1., 1., 0., 0., 1., 0., 2., 0., 0.], dtype=float32)]
output =  [[[0. 4. 0. 0. 4. 0.]]]
forward memory_state =  [[0. 4. 0.]]
forward carry_state =  [[0. 4. 1.]]
backward memory state =  [[0. 4. 0.]]
backward carry state =  [[0. 4. 1.]]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/87986.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Matlab绘制灰度直方图

直方图是根据灰图像绘制的,而不是彩色图像通。查看图像直方图时候,需要先确定图片是否为灰度图,使用MATLAB2019查看图片是否是灰度图片,在读取图片后在MATLAB界面的工作区会显示读取的图像矩阵,如果是,那么…

Cookie 和 Session 的工作流程

目录 一、Cookie是什么? 二、Session是什么? 三、Cookie的工作流程 四、Session的工作流程 五、Session和Cookie的区别和联系 一、Cookie是什么? Cookie是一种在网站和用户之间交换信息的机制。它是由Web服务器发送给用户浏览器的小型文本文件&#xff…

2023国赛数学建模思路 - 案例:异常检测

文章目录 赛题思路一、简介 -- 关于异常检测异常检测监督学习 二、异常检测算法2. 箱线图分析3. 基于距离/密度4. 基于划分思想 建模资料 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 一、简介 – 关于异常…

STM32--USART串口

文章目录 通信接口串口通信硬件电路电平标准参数时序 USART主要特性框图 数据帧发送器 波特率发生器SWART串口发送与接收工程串口收发数据包 通信接口 通信接口是指连接中央处理器(CPU)和标准通信子系统之间的接口,用于实现数据和控制信息在不…

GNN学习笔记

GNN 持续更新 实践程序放在了虚拟机里conda中NS环境里了 b站课程跳转------->>>>> 【不愧是公认最好的【图神经网络GNN/GCN教程】,从基础到进阶再到实战,一个合集全部到位!-人工智能/神经网络/图神经网络/深度学习。】 https…

ubuntu 20.04 安装 高版本cuda 11.7 和 cudnn最新版

一、安装显卡驱动 参考另一篇文章:Ubuntu20.04安装Nvidia显卡驱动教程_ytusdc的博客-CSDN博客 二、安装CUDA 英伟达官网(最新版):CUDA Toolkit 12.2 Update 1 Downloads | NVIDIA Developer CUDA历史版本下载地址:C…

vue3——递归组件的使用

该文章是在学习 小满vue3 课程的随堂记录示例均采用 <script setup>&#xff0c;且包含 typescript 的基础用法 一、使用场景 递归组件 的使用场景&#xff0c;如 无限级的菜单 &#xff0c;接下来就用菜单的例子来学习 二、具体使用 先把菜单的基础内容写出来再说 父…

STM32CubeMX配置STM32G0 Standby模式停止IWDG(HAL库开发)

1.打开STM32CubeMX选择好对应的芯片&#xff0c;打开IWDG 2.打开串口1进行调试 3.配置好时钟 4.写好项目名称&#xff0c;选好开发环境&#xff0c;最后获取代码。 5.打开工程&#xff0c;点击魔术棒&#xff0c;勾选Use Micro LIB 6.修改main.c #include "main.h"…

网络互联与互联网 - TCP 协议详解

文章目录 1 概述2 TCP 传输控制协议2.1 报文格式2.2 三次握手&#xff0c;建立连接2.3 四次挥手&#xff0c;释放连接2.4 四种拥塞控制 3 扩展3.1 实验演示3.2 网工软考 1 概述 在 TCP/IP 协议簇 中有两个传输协议 TCP&#xff1a;Transmission Control Protocol&#xff0c;传…

视频汇聚/视频云存储/视频监控管理平台EasyCVR提升网络稳定小tips来啦!

安防视频监控/视频集中存储/云存储/磁盘阵列EasyCVR平台可拓展性强、视频能力灵活、部署轻快&#xff0c;可支持的主流标准协议有国标GB28181、RTSP/Onvif、RTMP等&#xff0c;以及支持厂家私有协议与SDK接入&#xff0c;包括海康Ehome、海大宇等设备的SDK等。平台既具备传统安…

vue+file-saver+xlsx+htmlToPdf+jspdf实现本地导出PDF和Excel

页面效果如下&#xff08;echarts图表按需添加&#xff0c;以下代码中没有&#xff09; 1、安装插件 npm install xlsx --save npm install file-saver --save npm install html2canvas --save npm install jspdf --save2、main.js引入html2canvas import htmlToPdf from …

MyBatis分页思想和特殊字符

目录 一、MyBatis分页思想 1.1 使用场景 1.2 代码演示 二、MyBatis特殊字符 2.1代码演示 一、MyBatis分页思想 1.1 使用场景 Mybatis分页应用场景&#xff1a; MyBatis是一个Java持久层框架&#xff0c;它提供了一种将SQL查询和结果映射到Java对象的简单方式。分页是MyBa…

深度学习环境搭建 cuda、模型量化bitsandbytes安装教程 windows、linux

cuda、cudann、conda安装教程 输入以下命令&#xff0c;查看 GPU 支持的最高 CUDA 版本。 nvidia-smi cuda安装&#xff08;cudatoolkit&#xff09; 前往 Nvidia 的 CUDA 官网&#xff1a;CUDA Toolkit Archive | NVIDIA Developer CUDA Toolkit 11.8 Downloads | NVIDIA …

IO day 4

1、使用两个进程完成两个文件的拷贝&#xff0c;父进程拷贝前一半内容&#xff0c;子进程拷贝后一半内容&#xff0c;并且父进程要阻塞回收子进程资源 #include <myhead.h>int main(int argc, const char *argv[]) {char a[1] {0};pid_t pid;pid fork();//创建一个子进…

学习网络编程No.4【socket编程实战】

引言 北京时间&#xff1a;2023/8/19/23:01&#xff0c;耍了好几天&#xff0c;主要归咎于《我欲封天》这本小说&#xff0c;听了几个晚上之后逐渐入门&#xff0c;在闲暇时间又看了一下&#xff0c;小高潮直接来临&#xff0c;最终在三个昼夜下追完了&#xff0c;哈哈哈&…

开放网关架构演进

作者&#xff1a;庄文弘&#xff08;弘智&#xff09; 淘宝开放平台是阿里与外部生态互联互通的重要开放途径&#xff0c;通过开放的产品技术把阿里经济体一系列基础服务&#xff0c;像水、电、煤一样输送给我们的商家、开发者、社区媒体以及其他合作伙伴&#xff0c;推动行业的…

如何利用SFTP如何实现更安全的远程文件传输 ——【内网穿透】

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《高效编程技巧》《cpolar》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 文章目录 1. 安装openSSH1.1 安装SSH1.2 启动ssh 2. 安装cpolar2.1 配置termux服务 3. 远程SFTP连接配置3.1 查看生成的随机公…

openGauss学习笔记-46 openGauss 高级数据管理-子查询

文章目录 openGauss学习笔记-46 openGauss 高级数据管理-子查询46.1 SELECT语句中的子查询使用46.2 INSERT语句中的子查询使用46.3 UPDATE语句中的子查询使用46.4 DELETE语句中的子查询使用 openGauss学习笔记-46 openGauss 高级数据管理-子查询 子查询或称为内部查询&#xf…

H3C 无线网络vlan pool架构案例三层组网web配置

实验的是目标就是要实现华为vlan pool那种应用&#xff0c; 整个园区发一种ssid信号&#xff0c;但是连接的客户端可以随机连上后进入不同的vlan&#xff0c;在这大型园区网非常有用。 这种方法也适合同一个ssid情况下&#xff0c;在不同的位置关联不同的vlan 开启自动固化、…

【业务功能篇78】微服务-前端后端校验- 统一异常处理-JSR-303-validation注解

5. 前端校验 我们在前端提交的表单数据&#xff0c;我们也是需要对提交的数据做相关的校验的 Form 组件提供了表单验证的功能&#xff0c;只需要通过 rules 属性传入约定的验证规则&#xff0c;并将 Form-Item 的 prop 属性设置为需校验的字段名即可 校验的页面效果 前端数据…