Qwen 2.5:阿里巴巴集团的新一代大型语言模型

Qwen 2.5:阿里巴巴集团的新一代大型语言模型

摘要:

        在人工智能领域,大型语言模型(LLMs)的发展日新月异,它们在自然语言处理(NLP)和多模态任务中扮演着越来越重要的角色。阿里巴巴集团的Qwen团队最近推出了Qwen 2.5,这是其大语言模型系列的最新升级。本文将综述Qwen 2.5的主要特点、技术进步以及它在多模态交互和语言理解方面的应用潜力。

  1. 引言 随着人工智能技术的不断进步,大型语言模型已经成为推动自然语言处理领域发展的关键力量。Qwen 2.5的发布标志着阿里巴巴集团在这一领域的最新进展,它不仅在语言理解方面取得了显著提升,还在文本生成、视觉理解、音频理解等多个方面展现了卓越的能力。

  2. Qwen 2.5的主要特点 Qwen 2.5是阿里巴巴集团Qwen团队研发的新一代大型语言模型,它在以下方面展现了显著的特点和进步:

  • 参数规模:Qwen 2.5提供了从0.5B到72B不同参数规模的模型,以满足不同应用场景的需求。
  • 预训练数据:模型在包含18万亿tokens的大规模多语言和多模态数据集上进行预训练,确保了其在多样化数据上的强大表现。
  • 指令遵循与文本生成:Qwen 2.5在遵循指令和生成长文本方面的能力得到了显著提升,能够理解和生成结构化数据,如表格和JSON格式的输出。
  • 角色扮演与聊天机器人:模型增强了角色扮演的实现和聊天机器人的背景设置,使其在交互式应用中更加自然和适应性强。
  • 上下文长度:支持长达128K tokens的上下文长度,并能生成最多8K tokens的文本,这为处理长文本提供了可能。
  • 多语言支持:Qwen 2.5支持超过29种语言,包括中文、英文、法文、西班牙文等,使其具有广泛的国际适用性。
  1. 技术进步 Qwen 2.5的技术进步体现在以下几个方面:

  • 仅解码器稠密语言模型:Qwen 2.5采用了易于使用的仅解码器架构,提供了基模型和指令微调模型两种变体。
  • 预训练与微调:模型在高质量数据上进行后期微调,以贴近人类偏好,这在提升模型性能方面起到了关键作用。
  • 结构化数据理解:Qwen 2.5在理解结构化数据方面取得了显著进步,这对于处理表格、数据库和其他结构化信息尤为重要。
  1. 应用潜力 Qwen 2.5的多模态能力和语言理解能力使其在以下领域具有广泛的应用潜力:
  • 客户服务:作为聊天机器人,Qwen 2.5能够提供更加自然和准确的客户服务体验。
  • 内容创作:在文本生成方面,Qwen 2.5能够帮助用户快速生成高质量的内容。
  • 数据分析:Qwen 2.5的理解结构化数据的能力使其在数据分析和信息提取方面具有巨大潜力。
  • 教育和研究:Qwen 2.5的多语言支持为教育和研究提供了强大的工具,尤其是在语言学习和跨文化交流方面。

2. 代码使用

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "Qwen/Qwen2.5-7B-Instruct"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]

参考文献:

  • Qwen官方文档:Qwen
  • 代码: GitHub - QwenLM/Qwen2.5: Qwen2.5 is the large language model series developed by Qwen team, Alibaba Cloud.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/879671.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

获取参数

获取querystring参数 querystring 指的是URL中 ? 后面携带的参数,例如:http://127.0.0.1:9090/web?query杨超越。 获取请求的querystring参数的方法如下: 方法1: Query package main// querystringimport ("github.com/…

有毒有害气体检测仪的应用和性能_鼎跃安全

随着现代工业的不断发展和扩张,越来越多的企业涉及到有毒有害气体的生产、使用和处理。工业规模的扩大导致有毒有害气体的排放量增加,同时也增加了气体泄漏的风险。在发生火灾、爆炸或危险化学品泄漏等紧急事件时,救援人员需要迅速了解现场的…

python+flask+mongodb+vue撸一个实时监控linux服务资源的网站

用pythonflaskmongodbvue写一个监控linux服务资源实时使用率的页面网站,并每30秒定时请求,把Linux数据保存数据到mongodb数据库中,监控的linux的资源有:cup、内存、网络带宽、mysql慢查询、redis、系统平均负载、磁盘使用率等&…

百度Android IM SDK组件能力建设及应用

作者 | 星途 导读 移动互联网时代,随着社交媒体、移动支付、线上购物等行业的快速发展,对即时通讯功能的需求不断增加。对于各APP而言,接入IM SDK(即时通讯软件开发工具包)能够大大降低开发成本、提高开发效率&#…

动手学习RAG:大模型重排模型 bge-reranker-v2-gemma微调

动手学习RAG: 向量模型动手学习RAG: moka-ai/m3e 模型微调deepspeed与对比学习动手学习RAG:rerank模型微调实践 bge-reranker-v2-m3动手学习RAG:迟交互模型colbert微调实践 bge-m3动手学习RAG: 大模型向量模型微调 intfloat/e5-mistral-7b-instruct动手学…

Leetcode Hot 100刷题记录 -Day14(矩阵置0)

矩阵置0 问题描述: 给定一个 m x n 的矩阵,如果一个元素为 0 ,则将其所在行和列的所有元素都设为 0。 示例 1: 输入:matrix [[1,1,1],[1,0,1],[1,1,1]] 输出:[[1,0,1],[0,0,0],[1,0,1]]示例 2:…

模版进阶(template)

1.非类型模版参数 模版参数分类类型形参与非类型形参。 ① 类型形参:出现在在模板参数列表中,跟在class或者typename之类的参数类型名称。 ② 非类型形参,就是用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当…

鸿蒙Harmony应用开发,数据驾驶舱登录页面的实现

鸿蒙Harmony应用开发,数据驾驶舱登录页面的实现 ​ 首先我们有个Splash 过渡页面来判断当前是用户是否登录,我们先从preferences中获取token是否存在。如果不存在直接跳转登录即可,如果存在的情况我们再去获取下用户的信息看看token是否过期…

【leetcode】树形结构习题

二叉树的前序遍历 返回结果:[‘1’, ‘2’, ‘4’, ‘5’, ‘3’, ‘6’, ‘7’] 144.二叉树的前序遍历 - 迭代算法 给你二叉树的根节点 root ,返回它节点值的 前序 遍历。 示例 1: 输入:root [1,null,2,3] 输出:[1,…

[数据集][目标检测]智慧养殖场肉鸡目标检测数据集VOC+YOLO格式3548张1类别

数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):3548 标注数量(xml文件个数):3548 标注数量(txt文件个数):3548 标注…

MacOS安装homebrew,jEnv,多版本JDK

1 安装homebrew homebrew官网 根据官网提示,运行安装命令 /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"安装后,bash会提示执行两条命令 (echo; echo eval "$(/opt/homebrew/b…

VirtualBox增加磁盘并给docker用

在VirtualBox新增磁盘 在虚拟机停止的情况下依次选择,然后创建新磁盘 虚拟机新磁盘创建分区、格式化、挂载分区 开机自动挂载新磁盘分区/dev/sdb1: nano /etc/fstab末尾添加一行: /dev/sdb1 /disk02 e…

Neo4j入门案例:三星堆

创建一个关于三星堆的知识图谱可以是一个非常有趣的项目,它可以帮助理解如何使用Neo4j来存储和查询复杂的关系数据。三星堆文化以其独特的青铜器、金器和其他文物而闻名,这为我们提供了一个丰富的历史背景来构建知识图谱。 数据模型定义 实体类型&#…

[yotroy.cool] MGT 388 - Finance for Engineers - notes 笔记

个人博客https://www.yotroy.cool/,感谢关注~ 图片资源可能显示不全,请前往博客查看哦! ============================================================ Lecture 1 What is Accounting? The process of identifying, measuring and communicating economic informati…

【AI大模型】LLM主流开源大模型介绍

目录 🍔 LLM主流大模型类别 🍔 ChatGLM-6B模型 2.1 训练目标 2.2 模型结构 2.3 模型配置(6B) 2.4 硬件要求 2.5 模型特点 2.6 衍生应用 🍔 LLaMA模型 3.1 训练目标 3.2 模型结构 3.3 模型配置(7B) 3.4 硬件…

YOLOv8的GPU环境搭建方法

首先说明这个环境搭建教程是基于电脑已经安装好CUDA和CUDNN的情况下,去搭建能够正确运行YOLOv8代码的Pytorch的GPU版本。具体安装方法可见:最适合新手入门的CUDA、CUDNN、Pytorch安装教程_cuda安装-CSDN博客 第一步:需要在cmd中创建虚拟环境c…

前端框架对比和选择

​ 大家好,我是程序员小羊! 前言: 前端框架选择是前端开发中的关键决策,因为它影响项目的开发效率、维护成本和可扩展性。当前,最流行的前端框架主要包括 React、Vue 和 Angular。它们各有优劣,适用于不同…

Redisson实现分布式锁(看门狗机制)

目录 可重入锁: 锁重试和看门狗机制: 主从一致性: 首先引入依赖,配置好信息 3.使用Redisson的分布式锁 可重入锁: 可重入锁实现是通过redsi中的hash实现的,key依旧是业务名称加id,然后第一个…

功能测试干了三年,快要废了。。。

8年前刚进入到IT行业,到现在学习软件测试的人越来越多,所以在这我想结合自己的一些看法给大家提一些建议。 最近聊到软件测试的行业内卷,越来越多的转行和大学生进入测试行业,导致软件测试已经饱和了,想要获得更好的待…

QT开发:深入详解QtCore模块事件处理,一文学懂QT 事件循环与处理机制

Qt 是一个跨平台的 C 应用程序框架,QtCore 模块提供了核心的非 GUI 功能。事件处理是 Qt 应用程序的重要组成部分。Qt 的事件处理机制包括事件循环和事件处理,它们共同确保应用程序能够响应用户输入、定时器事件和其他事件。 1. 事件循环(Ev…