【C++篇】C++类与对象深度解析(三):类的默认成员函数详解

文章目录

  • 【C++篇】C++类与对象深度解析(三)
    • 前言
      • 4. 运算符重载基本概念
        • 4.1 运算符重载的基本概念
        • 4.2 重载运算符的规则
        • 4.3 成员函数重载运算符
        • 4.4 运算符重载的优先级与结合性
        • 4.5 运算符重载中的限制与特殊情况
          • 4.5.1 不能创建新的操作符
          • 4.5.2 无法重载的运算符
          • 4.5.3 前置和后置递增运算符的重载
          • 补充: `.*`(成员指针访问运算符)
            • 介绍:
            • 示例:使用 `.*` 运算符访问成员函数
            • 示例:使用 `.*` 运算符访问成员变量
            • 不能重载 `.*` 运算符
      • 5 赋值运算符重载
        • 5.1 赋值运算符重载必须定义为成员函数
        • 5.2 有返回值,建议写成当前类类型的引用
        • 5.3 编译器自动生成的默认赋值运算符
        • 5.4 显式实现赋值运算符重载的必要性
        • 5.5 赋值运算符与析构函数的关系
          • 总结
      • 6. 取地址运算符重载
        • 6.1 const成员函数
        • 6.2 取地址运算符重载
          • 普通取地址运算符重载
          • const取地址运算符重载
          • 总结
  • 写在最后

【C++篇】C++类与对象深度解析(三)

前言

💬 欢迎讨论:如果你在学习过程中有任何问题或想法,欢迎在评论区留言,我们一起交流学习。你的支持是我继续创作的动力!

👍 点赞、收藏与分享:觉得这篇文章对你有帮助吗?别忘了点赞、收藏并分享给更多的小伙伴哦!你们的支持是我不断进步的动力!
🚀 分享给更多人:如果你觉得这篇文章对你有帮助,欢迎分享给更多对C++感兴趣的朋友,让我们一起进步!

接上篇:
【C++篇】C++类与对象深度解析(二):类的默认成员函数详解

在上一篇文章中,我们讨论了C++类的默认成员函数,包括构造函数、析构函数和拷贝构造函数。本篇我们将继续探索剩余的默认成员函数,这些是C++面向对象编程中不可或缺的高级特性。掌握这些功能将帮助您更加灵活地设计和实现C++类。❤️

4. 运算符重载基本概念

4.1 运算符重载的基本概念

运算符重载允许我们为类对象自定义运算符的行为,这样当我们对类对象使用这些运算符时,它们会按照我们定义的方式执行。如果没有定义对应的运算符重载,编译器将会报错,因为它不知道如何处理这些运算符。

  • 运算符重载的定义:运算符重载是一个特殊的函数,名字是operator加上要重载的运算符。
  • 参数数量:重载函数的参数数量取决于运算符的类型。一元运算符有一个参数,二元运算符有两个参数。

示例:重载==运算符

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 重载==运算符用于比较两个Number对象是否相等
    bool operator==(const Number& n) const
    {
        return _value == n._value;
    }

private:
    int _value;
};

int main()
{
    Number n1(10);
    Number n2(10);

    if (n1 == n2) {
        cout << "两个数相等。" << endl;
    } else {
        cout << "两个数不相等。" << endl;
    }

    return 0;
}

解释

  • operator==:这个重载允许我们直接使用==来比较两个Number对象是否相等,而不需要手动检查它们的内部值。

4.2 重载运算符的规则
  • 函数的名字:重载的函数名称必须是operator加上运算符,例如operator+operator==
  • 参数和返回类型:重载的运算符函数需要根据需要设置参数和返回类型。对于二元运算符,左侧对象传给第一个参数,右侧对象传给第二个参数。

示例:重载+运算符

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 重载+运算符,用于两个Number对象相加
    Number operator+(const Number& n) const
    {
        return Number(_value + n._value);
    }

    void Print() const
    {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main()
{
    Number n1(10);
    Number n2(20);

    Number n3 = n1 + n2; // 使用重载的+运算符
    n3.Print(); // 输出: Value: 30

    return 0;
}

解释

  • operator+:这个运算符重载允许我们使用+运算符来相加两个Number对象,并返回一个新的Number对象。

4.3 成员函数重载运算符

如上面的例子,当运算符重载定义为类的成员函数时,第一个运算对象会隐式地传递给this指针,因此成员函数的参数数量比操作数少一个。

示例:重载-运算符

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 重载-运算符,用于两个Number对象相减
    Number operator-(const Number& n) const
    {
        return Number(_value - n._value);
    }

    void Print() const
    {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main()
{
    Number n1(20);
    Number n2(10);

    Number n3 = n1 - n2; // 使用重载的-运算符
    n3.Print(); // 输出: Value: 10

    return 0;
}

解释

  • operator-:这个重载允许我们使用-运算符来减去两个Number对象的值,并返回一个新的Number对象。

4.4 运算符重载的优先级与结合性

虽然我们可以改变运算符的行为,但其优先级和结合性与内置类型运算符保持一致。这意味着我们不能通过重载运算符来改变它们的运算顺序。

示例:重载*运算符

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 重载*运算符,用于两个Number对象相乘
    Number operator*(const Number& n) const
    {
        return Number(_value * n._value);
    }

    void Print() const
    {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main()
{
    Number n1(5);
    Number n2(4);

    Number n3 = n1 * n2; // 使用重载的*运算符
    n3.Print(); // 输出: Value: 20

    return 0;
}

解释

  • operator*:这个重载允许我们使用*运算符来相乘两个Number对象的值,并返回一个新的Number对象,其优先级还是高于重载后的+运算符。

4.5 运算符重载中的限制与特殊情况
4.5.1 不能创建新的操作符

在C++中,虽然可以重载大多数运算符,但不能创建新的操作符。也就是说,我们不能使用C++语法中没有的符号来创建新的运算符。例如,operator@是非法的,因为@符号不是C++中的有效运算符。

解释

  • 只能重载C++已有的运算符,如+, -, *, /, ==等。不能创建诸如operator@这样的运算符,因为@不属于C++的运算符集合。

示例:尝试创建一个新的操作符(会报错)

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 错误:不能定义新的运算符
    Number operator@(const Number& n) const
    {
        return Number(_value + n._value);
    }

private:
    int _value;
};

int main()
{
    Number n1(10);
    Number n2(20);

    // n1 @ n2; // 错误:@ 不是一个合法的C++运算符

    return 0;
}

结果

  • 编译器会报错,因为@不是C++中的有效运算符,不能通过operator@进行重载。
4.5.2 无法重载的运算符

在C++中,有五个运算符是不能重载的,这些运算符的行为在语言中是固定的,不能改变。

这些运算符包括:

  1. .(成员访问运算符)
  2. .*(成员指针访问运算符)见以下补充
  3. ::(作用域解析运算符)
  4. sizeof(大小计算运算符)
  5. ?:(三元条件运算符)

解释

  • 这些运算符的行为在C++中是固定的,无法通过重载改变它们的语义或使用方式。

示例:尝试重载不能重载的运算符(会报错)

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 错误:不能重载sizeof运算符
    int operator sizeof() const
    {
        return _value;
    }

private:
    int _value;
};

int main()
{
    Number n1(10);

    // int size = sizeof(n1); // 错误:无法重载sizeof运算符

    return 0;
}

结果

  • 编译器会报错,因为sizeof是一个固定的运算符,无法通过重载改变其行为。
4.5.3 前置和后置递增运算符的重载

在C++中,递增运算符++可以有两种形式:前置递增后置递增。它们的功能类似,但实现方式不同。

  • 前置递增:先递增,然后返回递增后的值。
  • 后置递增:先返回当前值,然后递增。

为了区分前置和后置递增运算符,C++规定在重载后置递增运算符时,必须增加一个int参数。这只是一个区分符,并没有实际用途。

示例:重载前置和后置递增运算符

前置直接操作对象,传引用返回,而后置返回副本,用传值返回

#include<iostream>
using namespace std;

class Number {
public:
    Number(int value = 0) : _value(value) {}

    // 重载前置++
    Number& operator++()
    {
        ++_value;
        return *this;
    }

    // 重载后置++
    Number operator++(int)
    {
        Number tmp = *this; // 保存当前值
        ++_value;           // 递增
        return tmp;         // 返回原始值
    }

    void Print() const
    {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main()
{
    Number n1(5);

    ++n1; // 前置++
    n1.Print(); // 输出: Value: 6

    n1++; // 后置++
    n1.Print(); // 输出: Value: 7

    return 0;
}

解释

  • operator++():这是前置递增的实现。先递增,然后返回递增后的对象自身。
  • operator++(int):这是后置递增的实现。先保存当前对象的副本,然后递增,并返回副本。

结果

  • 前置递增直接修改并返回对象自身,而后置递增返回递增前的副本,之后再进行递增。

这里我们直接使用的普通++类型来实现+1操作,在之后实现了+=运算符重载后可以实现复用,这在最后类和对象的实践篇:日期类的实现会讲到


补充: .*(成员指针访问运算符)
介绍:

.* 是 C++中的成员指针访问运算符,用于通过对象访问指向该对象成员的指针。这个运算符主要用在需要通过指针访问对象的成员函数或成员变量的场景中。

在 C++ 中,.*->* 运算符提供了类似于.-> 的功能,但用于成员指针操作。因为.* 这种运算符在使用上非常特殊,因此不能进行重载。

示例:使用 .* 运算符访问成员函数

假设我们有一个类 MyClass,其中包含一个成员函数 Func,我们可以通过成员指针访问并调用这个函数。

#include<iostream>
using namespace std;

class MyClass {
public:
    void Func() {
        cout << "MyClass::Func() 被调用了" << endl;
    }
};

int main() {
    MyClass obj;             // 创建类对象
    void (MyClass::*pf)() = &MyClass::Func;  // 定义成员函数指针,并指向MyClass的Func函数

    // 通过对象和成员函数指针调用函数
    (obj.*pf)();  // 使用 .* 运算符调用成员函数

    return 0;
}

解释

  • void (MyClass::*pf)() = &MyClass::Func;:这行代码定义了一个指向 MyClass 成员函数的指针 pf,并将其初始化为指向 Func 函数的地址。
  • (obj.*pf)();:使用 .* 运算符,通过 obj 对象调用 pf 所指向的成员函数 Func
示例:使用 .* 运算符访问成员变量

同样的方式可以用于访问成员变量,通过成员指针操作符,我们可以通过一个对象来访问其成员变量。

#include<iostream>
using namespace std;

class MyClass {
public:
    int value;  // 成员变量
};

int main() {
    MyClass obj;              // 创建类对象
    obj.value = 42;           // 直接访问成员变量

    int MyClass::*pValue = &MyClass::value;  // 定义成员变量指针,并指向MyClass的value成员

    // 通过对象和成员变量指针访问成员变量
    cout << "Value: " << obj.*pValue << endl;  // 使用 .* 运算符访问成员变量

    return 0;
}

解释

  • int MyClass::*pValue = &MyClass::value;:这行代码定义了一个指向 MyClass 成员变量的指针 pValue,并将其初始化为指向 value 变量的地址。
  • obj.*pValue:使用 .* 运算符,通过 obj 对象访问 pValue 所指向的成员变量 value
不能重载 .* 运算符

由于 .* 运算符的特殊性,它不能被重载。.* 的行为在 C++ 语言中已经固定,主要用于通过对象访问其成员指针所指向的成员。

示例:尝试重载 .*(会报错)

#include<iostream>
using namespace std;

class MyClass {
public:
    int value;

    // 错误:不能重载 .* 运算符
    int operator.*() const {
        return value;
    }
};

int main() {
    MyClass obj;
    obj.value = 42;

    // 编译错误:无法重载 .* 运算符
    // cout << obj.* << endl;

    return 0;
}

结果

  • 尝试重载 .* 运算符会导致编译错误,因为这个运算符在 C++ 中是固定的,不能改变其行为。

5 赋值运算符重载

赋值运算符重载是一个特殊的运算符重载,用于将一个对象的状态复制到另一个已经存在的对象中。需要注意的是,赋值运算符重载与拷贝构造函数是不同的,拷贝构造用于初始化一个新对象,而赋值运算符则用于给已经存在的对象赋值。

5.1 赋值运算符重载必须定义为成员函数

赋值运算符重载是C++的一个特殊运算符重载,必须作为类的成员函数来定义。这是因为赋值运算符总是需要操作当前对象(this指针),因此它不能作为全局函数来实现。

示例:定义赋值运算符重载

#include<iostream>
using namespace std;

class MyClass {
public:
    MyClass(int value = 0) : _value(value) {}

    // 赋值运算符重载,参数是const类型的引用
    MyClass& operator=(const MyClass& other) {
        if (this != &other) {  // 防止自我赋值
            _value = other._value;
        }
        return *this;  // 返回当前对象的引用,以支持链式赋值
    }

    void Print() const {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main() {
    MyClass obj1(10);
    MyClass obj2(20);

    obj2 = obj1;  // 调用赋值运算符重载

    obj2.Print(); // 输出: Value: 10

    return 0;
}

解释

  • operator=:这是赋值运算符的重载函数。this指针指向当前对象,other是被赋值的对象。
  • if (this != &other):检查当前对象是否与传入对象是同一个对象,如果是同一个对象,则跳过赋值操作,以避免自我赋值引起的问题。
  • return *this;:返回当前对象的引用,这允许连续的赋值操作,例如a = b = c;
5.2 有返回值,建议写成当前类类型的引用

赋值运算符重载函数通常返回当前对象的引用,这样可以安全支持链式赋值操作,即多个对象之间连续赋值的语句。

示例:支持链式赋值

#include<iostream>
using namespace std;

class MyClass {
public:
    MyClass(int value = 0) : _value(value) {}

    // 赋值运算符重载,返回当前对象的引用
    MyClass& operator=(const MyClass& other) {
        if (this != &other) {
            _value = other._value;
        }
        return *this;
    }

    void Print() const {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main() {
    MyClass obj1(10);
    MyClass obj2(20);
    MyClass obj3(30);

    obj1 = obj2 = obj3;  // 链式赋值

    obj1.Print(); // 输出: Value: 30
    obj2.Print(); // 输出: Value: 30

    return 0;
}

解释

  • 在链式赋值中,obj2 = obj3 会首先执行,operator= 返回 obj2 的引用,然后 obj1 = obj2 执行,这样 obj1 最终也得到了 obj3 的值。
5.3 编译器自动生成的默认赋值运算符

如果我们没有显式定义赋值运算符重载,编译器会自动生成一个默认的赋值运算符

这个默认的赋值运算符执行的是浅拷贝操作:对于内置类型成员变量,逐个字节地复制值;对于自定义类型成员变量,则调用它们的赋值运算符重载。

示例:使用编译器生成的默认赋值运算符

#include<iostream>
using namespace std;

class MyClass {
public:
    MyClass(int value = 0) : _value(value) {}

    // 未显式定义赋值运算符重载,编译器会自动生成
    void Print() const {
        cout << "Value: " << _value << endl;
    }

private:
    int _value;
};

int main() {
    MyClass obj1(10);
    MyClass obj2(20);

    obj2 = obj1;  // 使用编译器生成的默认赋值运算符

    obj2.Print(); // 输出: Value: 10

    return 0;
}

解释

  • 在这个例子中,编译器生成了一个默认的赋值运算符,它对内置类型的成员变量执行浅拷贝操作。
5.4 显式实现赋值运算符重载的必要性

在一些情况下,例如类中包含指针成员或其他动态资源,浅拷贝可能会导致问题。这时,我们需要显式实现赋值运算符重载来进行深拷贝,以确保对象的独立性。

示例:显式实现赋值运算符进行深拷贝

#include<iostream>
using namespace std;

class MyClass {
public:
    MyClass(int value = 0) : _value(new int(value)) {}

    // 拷贝构造函数
    MyClass(const MyClass& other) {
        _value = new int(*other._value);
    }

    // 赋值运算符重载
    MyClass& operator=(const MyClass& other) {
        if (this != &other) {
            delete _value; // 删除旧的动态内存
            _value = new int(*other._value); // 分配新的动态内存并复制值
        }
        return *this;
    }

    ~MyClass() {
        delete _value; // 析构函数中释放动态内存
    }

    void Print() const {
        cout << "Value: " << *_value << endl;
    }

private:
    int* _value; // 指针类型成员变量
};

int main() {
    MyClass obj1(10);
    MyClass obj2(20);

    obj2 = obj1;  // 使用自定义的赋值运算符进行深拷贝

    obj1.Print(); // 输出: Value: 10
    obj2.Print(); // 输出: Value: 10

    return 0;
}

解释

  • 在这个例子中,MyClass 类中包含一个指针成员变量 _value,我们需要自定义赋值运算符以确保进行深拷贝,即在赋值时为 _value 分配新的内存,并将值复制到新分配的内存中。
5.5 赋值运算符与析构函数的关系

如果一个类显式定义了析构函数来释放动态资源,那么它通常也需要显式定义赋值运算符重载,以避免浅拷贝带来的资源管理问题。

示例:显式实现析构函数和赋值运算符重载

#include<iostream>
using namespace std;

class MyClass {
public:
    MyClass(int value = 0) : _value(new int(value)) {}

    // 拷贝构造函数
    MyClass(const MyClass& other) {
        _value = new int(*other._value);
    }

    // 赋值运算符重载
    MyClass& operator=(const MyClass& other) {
        if (this != &other) {
            delete _value;
            _value = new int(*other._value);
        }
        return *this;
    }

    // 析构函数
    ~MyClass() {
        delete _value;
    }

    void Print() const {
        cout << "Value: " << *_value << endl;
    }

private:
    int* _value;
};

int main() {
    MyClass obj1(10);
    MyClass obj2(20);

    obj2 = obj1;  // 使用自定义的赋值运算符进行深拷贝

    obj1.Print(); // 输出: Value: 10
    obj2.Print(); // 输出: Value: 10

    return 0;
}

解释

  • MyClass 包含一个指针成员变量 _value,我们通过显式实现赋值运算符和析构函数来管理动态内存,确保不会因为浅拷贝导致资源泄漏或多次释放同一块内存。
总结

赋值运算符重载在管理动态资源、确保对象独立性以及支持链式赋值时非常有用。通过理解赋值运算符的特性和如何正确实现它,我们可以编写更健壮的C++程序,避免浅拷贝带来的问题。


6. 取地址运算符重载

在C++中,取地址运算符&用于获取对象的内存地址。在大多数情况下,编译器自动生成的取地址运算符重载已经足够使用。然而,在某些特殊场景下,我们可能希望控制或限制对象地址的获取方式,这时候我们就可以手动重载取地址运算符。

6.1 const成员函数

const成员函数是指用const修饰的成员函数。它主要用于确保成员函数不会修改类的成员变量,从而保证函数的只读特性。

  • 用法:将const修饰符放在成员函数的参数列表之后。
  • 效果const实际修饰的是成员函数中隐含的this指针,表示在该成员函数中不能对类的任何成员进行修改。

示例代码:const成员函数

#include<iostream>
using namespace std;

class Date {
public:
    Date(int year = 1, int month = 1, int day = 1) 
        : _year(year), _month(month), _day(day) {}

    // const成员函数,表示不会修改类成员变量
    void Print() const {
        cout << _year << "-" << _month << "-" << _day << endl;
    }

private:
    int _year;
    int _month;
    int _day;
};

int main() {
    // 非const对象可以调用const成员函数
    Date d1(2024, 7, 5);
    d1.Print();

    // const对象也可以调用const成员函数
    const Date d2(2024, 8, 5);
    d2.Print();

    return 0;
}

解释

  • void Print() constconst修饰了Print函数,表示它不会修改Date类的成员变量。this指针的类型在这个函数中变为const Date* const,意味着它指向的对象及指针本身都不能被修改。
  • 权限的缩小const对象只能调用const成员函数,而非const对象可以调用任意成员函数,这体现了一种权限的缩小。
6.2 取地址运算符重载

取地址运算符&通常用于获取对象的地址。通过重载该运算符,可以自定义获取对象地址的方式,甚至可以禁止获取地址或返回一个伪造的地址。

普通取地址运算符重载

普通取地址运算符用于非const对象,重载后可以控制返回对象的地址。

示例代码:普通取地址运算符重载

#include<iostream>
using namespace std;

class Date {
public:
    Date(int year = 1, int month = 1, int day = 1) 
        : _year(year), _month(month), _day(day) {}

    // 重载普通取地址运算符
    Date* operator&() {
        // return this;  // 返回对象的真实地址
        return nullptr;  // 返回空指针,伪装地址
    }

private:
    int _year;
    int _month;
    int _day;
};

int main() {
    Date d1(2024, 7, 5);
    Date* p1 = &d1;  // 使用重载的取地址运算符

    if (p1 == nullptr) {
        cout << "未获取到真实地址" << endl;
    } else {
        cout << "对象的地址为: " << p1 << endl;
    }

    return 0;
}

解释

  • Date* operator&():这是普通的取地址运算符重载。可以根据需求决定是否返回对象的真实地址,也可以返回nullptr或其他伪造地址,以达到某些特定需求(如禁止获取对象地址)的目的。
const取地址运算符重载

const取地址运算符用于const对象,重载后可以控制如何返回const对象的地址。

示例代码:const取地址运算符重载

#include<iostream>
using namespace std;

class Date {
public:
    Date(int year = 1, int month = 1, int day = 1) 
        : _year(year), _month(month), _day(day) {}

    // 重载const取地址运算符
    const Date* operator&() const {
        // return this;  // 返回对象的真实地址
        return nullptr;  // 返回空指针,伪装地址
    }

private:
    int _year;
    int _month;
    int _day;
};

int main() {
    const Date d1(2024, 8, 5);
    const Date* p1 = &d1;  // 使用重载的取地址运算符

    if (p1 == nullptr) {
        cout << "未获取到真实地址" << endl;
    } else {
        cout << "对象的地址为: " << p1 << endl;
    }

    return 0;
}

解释

  • const Date* operator&() const:这是const取地址运算符重载。它同样可以控制是否返回const对象的真实地址或者伪装地址。
总结
  • 默认行为:在大多数情况下,编译器自动生成的取地址运算符已经足够使用,不需要手动重载。
  • 特殊需求:在一些特殊场景(如禁止获取对象地址)下,可以通过重载取地址运算符来自定义行为。
  • const修饰:通过const修饰符可以控制成员函数的只读特性,确保在函数中不修改类成员变量。同时,const取地址运算符重载可以用于const对象,确保其地址获取方式受到控制。

写在最后

运算符重载使C++类对象能像基本数据类型一样操作,赋予类更直观的行为。通过重载 +- 等运算符,我们可以实现对象间的运算和比较。赋值运算符尤其重要,确保对象在涉及动态资源时安全地复制。const 成员函数则提供了数据保护,避免意外修改。总的来说,运算符重载让代码更加简洁优雅,增强了程序的灵活性。


以上就是关于【C++篇】C++类与对象深度解析(三):类的默认成员函数详解的内容,到此为止我们就把类的六个默认成员函数讲解完啦,各位大佬有什么问题欢迎在评论区指正,或者私信我也是可以的啦,您的支持是我创作的最大动力!❤️

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/879174.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

uniapp离线(本地)打包

安卓离线打包 注意&#xff1a;jdk建议选择1.8 下载Android Studio配置gradle仓库地址 第一步&#xff1a;先下载对应的版本&#xff0c;进行压缩包解压 第二步&#xff1a;在电脑磁盘&#xff08;D盘&#xff09;&#xff0c;创建文件夹存放压缩包并进行解压&#xff0c;并创…

python-简单的数据结构

题目描述 小理有一天在网上冲浪的时候发现了一道很有意思的数据结构题。 该数据结构形如长条形。 一开始该容器为空&#xff0c;有以下七种操作。 1 a从前面插入元素 a ; 2 从前面删除一个元素; 3 a从后面插入一个元素; 4 从后面删除一个元素; 5 将整个容器头尾翻转; 6 输出个…

阻止冒泡事件

每一div都有一个切换事件 div里包括【复制】事件&#xff0c; 点击【复制按钮】&#xff0c;会触发【切换事件】 因为冒泡 在 Vue 3 中&#xff0c;阻止 click 事件冒泡可以使用以下常规方法&#xff1a; 1 事件修饰符&#xff1a;Vue 3 中提供了多种事件修饰符&#xff0c…

buildroot移植qt报错Info: creating stash file (补充qt添加字库)

移植qt库&#xff0c;编译文件报错Info: creating stash file /home/rbing/QT/uart/.qmake.stash Project ERROR: Unknown module(s) in QT: serialport rbingouc:~/QT/uart$ /home/rbing/linux/tool/buildroot-2022.02.9/output/host/usr/bin/qmake Info: creating stash fil…

【LeetCode】每日一题 2024_9_18 坐上公交的最晚时间(排序,模拟)

前言 每天和你一起刷 LeetCode 每日一题~ LeetCode 启动&#xff01; 题目&#xff1a;坐上公交的最晚时间 代码与解题思路 func latestTimeCatchTheBus(buses []int, passengers []int, capacity int) (ans int) {// 核心思路分析&#xff1a;// 你可以搭乘公交车的最晚到达…

【数据仓库】数据仓库常见的数据模型——维度模型

文章部分图参考自&#xff1a;多维数据模型各种类型&#xff08;星型、雪花、星座、交叉连接&#xff09; - 知乎 (zhihu.com) 文章部分文字canla一篇文章搞懂数据仓库&#xff1a;四种常见数据模型&#xff08;维度模型、范式模型等&#xff09;-腾讯云开发者社区-腾讯云 (ten…

React18快速入门

需要先安装并配置React相关的工具和插件 下载安装Node.js&#xff0c;这里以MacOS Node.js v22.6.0为例 终端命令行检查是否安装成功 node -v npm -vNode.js快速入门 npm设置镜像源 #设置为阿里镜像源 npm config set registry https://registry.npmmirror.com #查看是否生…

初始Linux 和 各种常见指令

目录 Linux背景 1. 发展史 Linux发展历史 1.历史 2. 开源 Linux下基本指令 01. ls 指令 02. pwd命令 03. cd 指令 04. touch指令 05.mkdir指令&#xff08;重要&#xff09;&#xff1a; 06.rmdir指令 && rm 指令&#xff08;重要&#xff09;&#xff1a; …

Minio环境搭建(单机安装包、docker)(一)

前言&#xff1a; 项目中客户不愿意掏钱买oss&#xff0c;无奈只能给他免费大保健来一套。本篇文章只是记录验证可行性&#xff0c;毕竟minio太少文档了&#xff0c;参考着官网来。后面还会再出一套验证集群部署的文章。 一、资料 MinIO官网&#xff1a; MinIO | S3 Compatib…

web渗透—RCE

一&#xff1a;代码执行 相关函数 1、eval()函数 assert()函数 (1)原理&#xff1a;将用户提交或者传递的字符串当作php代码执行 (2)passby:单引号绕过&#xff1a;闭合注释&#xff1b;开启GPC的话就无法绕过&#xff08;GPC就是将单引号转换为"反斜杠单引号"&a…

基于python+django+vue的鲜花商城系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于pythondjangovueMySQL的线…

[数据集][目标检测]俯拍航拍森林火灾检测数据集VOC+YOLO格式6116张2类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;6116 标注数量(xml文件个数)&#xff1a;6116 标注数量(txt文件个数)&#xff1a;6116 标注…

图像滤波---各项异性扩散滤波使用笔记及代码

图像滤波---各项异性扩散滤波使用笔记及代码 一、文章内容介绍二、各项异性扩散滤波和各项同性滤波1、各项同性滤波2、各项异性扩散滤波3、各项异性和各项同性的对比 三、各项异性扩散滤波的原理介绍四、各项异性扩散滤波公式五、公式中的参数使用说明1、扩散速率 λ \lambda λ…

【C++】虚函数

一、什么是虚函数 在类的成员函数前加上virtual关键字&#xff0c;这个函数就是虚函数。 虚函数的所用就是完成多态。多态示例如下&#xff1a; class A {public:virtual void func()//虚函数{cout << "A" << endl;}void ftwo()//普通函数{cout <&…

黑神话·悟空藕丝步云履怎么获得?来看这一篇

1、传送到花果山-山脚-青嶂道土地庙。 2、在这里召唤筋斗云飞行岛章节刚开始的的初始位置方向 在这里推荐一款旗舰开放式耳机南卡OE Pro2&#xff0c;在目前有许多开放式耳机产品存在佩戴舒适度低且音质表现非常一般的当下&#xff0c;南卡开放式耳机凭借“非常规”的软硬结合…

Vue2电商平台项目 (三) Search模块、面包屑(页面自己跳自己)、排序、分页器!

文章目录 一、Search模块1、Search模块的api2、Vuex保存数据3、组件获取vuex数据并渲染(1)、分析请求数据的数据结构(2)、getters简化数据、渲染页面 4、Search模块根据不同的参数获取数据(1)、 派发actions的操作封装为函数(2)、设置带给服务器的参数(3)、Object.assign整理参…

智慧宿舍平台|基于Springboot+vue的智慧宿舍系统(源码+数据库+文档)

智慧宿舍系统 目录 基于Springbootvue的智慧宿舍系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取 博主介绍&#xff1a;✌️大厂码农|毕设布道师&#xff0c;阿里云开发社区乘风者…

java多线程模拟多个售票员从同一个票池售票

程序功能 这段代码模拟了多个售票员从一个有限的票池中售票的过程。主要功能如下&#xff1a; 票池共有50张票&#xff0c;多个售票员&#xff08;线程&#xff09;并发进行售票。 使用同步机制确保线程安全&#xff0c;避免多个售票员同时出售同一张票。 每个售票员不断检查票…

51单片机 - DS18B20实验1-读取温度

上来一张图&#xff0c;明确思路&#xff0c;程序整体裤架如下&#xff0c;通过单总线&#xff0c;单独封装一个.c文件用于单总线的操作&#xff0c;其实&#xff0c;我们可以把点c文件看成一个类操作&#xff0c;其属性就是我们面向对象的函数&#xff0c;也叫方法&#xff0c…

软考中级软件设计师——数据结构与算法基础学习笔记

软考中级软件设计师——数据结构与算法基本概念 什么是数据数据元素、数据项数据结构逻辑结构物理结构&#xff08;存储结构&#xff09; 算法什么是算法五个特性算法效率的度量时间复杂度空间复杂度 什么是数据 数据是信息的载体&#xff0c;是描述客观事物属性的数、字符及所…