图像滤波---各项异性扩散滤波使用笔记及代码

图像滤波---各项异性扩散滤波使用笔记及代码

  • 一、文章内容介绍
  • 二、各项异性扩散滤波和各项同性滤波
    • 1、各项同性滤波
    • 2、各项异性扩散滤波
    • 3、各项异性和各项同性的对比
  • 三、各项异性扩散滤波的原理介绍
  • 四、各项异性扩散滤波公式
  • 五、公式中的参数使用说明
  • 六、完整MATLAB代码

一、文章内容介绍

1、文章首先介绍各项异性扩散滤波以及各项同性滤波
2、接着简要的说明各项异性滤波算法的原理和功能
3、然后对各项异性滤波算法的几个参数的作用及调试进行详解
4、最后附上各项异性滤波matlab的代码

二、各项异性扩散滤波和各项同性滤波

1、各项同性滤波

在做图像处理时,我们接触到很多滤波算法,耳熟能详的有高斯滤波、均值滤波以及中值滤波。这些滤波
算法中,对于每一个像素点,算法都一视同仁,或使用相同的系数,或使用相同的邻域规则来对像素值进行处理。这些算法不考虑该像素的梯度方向,一视同仁,处理效果在各个方向上是一样的,对于整幅图像的处理是均匀的,图像的平滑不会因梯度而有所偏向,这样的滤波叫各项同性滤波(Isotropic Filtering)。

2、各项异性扩散滤波

与各项同性扩散滤波相对的即是各项异性扩散滤波(Anisotropic Filtering),各项异性扩散滤波是一种保边滤波器,在不同的梯度方向上,像素值做不同程度的改变,区分出图像的边缘信息,在去除噪声的同时保留边缘。
各项异性扩散叫P-M扩散,论文原文:Scale-space and edge detection using anisotropic diffusion。

3、各项异性和各项同性的对比

各项同性滤波处理是均匀的,不考虑方向,适合于简单的去噪和模糊处理。
各项异性滤波处理是方向依赖的,能够更好地保留边缘和细节,适合于复杂的图像去噪,尤其是在需要保留边缘信息的情况下。

三、各项异性扩散滤波的原理介绍

各项异性扩散滤波的本质是根据图像的梯度信息来调控扩散系数。
各项异性指物体的全部或者部分物理、化学性质随方向的不同而有所变化的特性。对于整张图像,将其看做一个热量场,将每个像素看做一个热流,对于边缘像素,我们不想让其平滑掉,所以边缘的邻域像素,热流的扩散要很弱,除此之外,其他的地方,顺着梯度的方向进行扩散,扩散过的图像区域就会变得平滑,如此在保留边缘的同时,平滑了噪声区域。

四、各项异性扩散滤波公式

滤波公式如下:
I t + 1 = I t + λ ∗ ( c N x y ∗ D N ( I t ) + c S x y ∗ D S ( I t ) + c E x y ∗ D E ( I t ) + c W x y ∗ D W ( I t ) ) I_{t+1}=I_t+\lambda*(cN_{xy}*D_N(I_t)+cS_{xy}*D_S(I_t)+cE_{xy}*D_E(I_t)+cW_{xy}*D_W(I_t)) It+1=It+λ(cNxyDN(It)+cSxyDS(It)+cExyDE(It)+cWxyDW(It))
其中I表示图像,x,y表示像素位置,t代表迭代次数, λ \lambda λ表示扩散速率。 D N D_N DN D S D_S DS D E D_E DE D W D_W DW分别表示南、北、西、东,即上下左右四个方向的梯度,梯度计算如下:
D N ( I t ) = I t ( x , y − 1 ) − I t ( x , y ) D_N(I_t)=I_t(x,y-1)-I_t(x,y) DN(It)=It(x,y1)It(x,y) D S ( I t ) = I t ( x , y + 1 ) − I t ( x , y ) D_S(I_t)=I_t(x,y+1)-I_t(x,y) DS(It)=It(x,y+1)It(x,y) D E ( I t ) = I t ( x − 1 , y ) − I t ( x , y ) D_E(I_t)=I_t(x-1,y)-I_t(x,y) DE(It)=It(x1,y)It(x,y) D W ( I t ) = I t ( x + 1 , y ) − I t ( x , y ) D_W(I_t)=I_t(x+1,y)-I_t(x,y) DW(It)=It(x+1,y)It(x,y)
Nxy、Sxy、Exy、Wxy分别表示对应方向上的扩散系数,扩散系数公式如下:
c N x y = e − D N ( I t ) 2 K 2 cN_{xy}=e^{- \frac{{D_N(I_t)}^2}{K^2}} cNxy=eK2DN(It)2 c S x y = e − D S ( I t ) 2 K 2 cS_{xy}=e^{- \frac{{D_S(I_t)}^2}{K^2}} cSxy=eK2DS(It)2 c E x y = e − D E ( I t ) 2 K 2 cE_{xy}=e^{- \frac{{D_E(I_t)}^2}{K^2}} cExy=eK2DE(It)2 c W x y = e − D W ( I t ) 2 K 2 cW_{xy}=e^{- \frac{{D_W(I_t)}^2}{K^2}} cWxy=eK2DW(It)2
其中 K K K表示对应方向的扩散灵敏度。

五、公式中的参数使用说明

1、扩散速率 λ \lambda λ

(1)参数说明

从公式中显而易见, λ \lambda λ控制每次迭代中像素值的变化量。
理论上, λ \lambda λ较大每个像素的扩散速度会比较快,因为每次像素值改变的增量会比较大,会导致图像的细节丢失。

(2)效果展示

在N(迭代次数)和K固定的情况下, λ \lambda λ从0.1~0.9的去噪效果图,0.1时细节保留最完整,0.3时细节丢失严重,0.5 ~0.7细节丢失程度依次增加。
在这里插入图片描述

(3)调节指南

从效果图分析,调解时,固定另外两个变量,从0.1开始逐步增加或减少,步长可设置为0.05、0.1、0.2,观察图像的去噪效果和细节保留情况,找到最佳的平衡点,比如,上述图像的滤波,平衡点应在0.1 ~0.3之间。

2、扩散敏感度 K K K

(1)参数说明

从公式看, K K K是指数函数 e e e的一个参数,函数形式为 y = e − 1 K 2 ∗ x 2 y=e^{-{\frac{1}{K^2}*x^2}} y=eK21x2,当 1 K 2 = 0.5 \frac{1}{K^2} = 0.5 K21=0.5时,函数图像如下:
在这里插入图片描述
1 K 2 = 2 \frac{1}{K^2} = 2 K21=2时,函数图像如下:
在这里插入图片描述
从两幅图像来看, K K K越大,曲线变换越平缓,表明系数对梯度的响应越不敏感,各项异性的程度就越低,图像应该就越模糊。

(2)效果展示

固定 λ = 0.12 \lambda=0.12 λ=0.12,N=20时, K K K从10增加到40,从图上看, K K K越大,平滑的越厉害,细节丢失越严重。
在这里插入图片描述

(3)调节指南

对于 K K K,通常可以选择从10开始调节,增加或减少,每次步长5、10、15、20尝试。
如果图像中细节多噪声少,K的值应该小一些,否则就大一些。

六、完整MATLAB代码

运行环境为Windows10和Matlab2023a
run.m

clc 
clear
%读取图像
img = imread('lisaGrayNoise.bmp');
%设置系数
lambda = 0.12;
K = 40;
N = 20;
%执行各项异性扩散滤波
imgADF = ImageADF(img,lambda,K,N);
figure;
imshow(img);
title('原图');
figure;
imshow(imgADF);
title('各向异性扩散滤波结果K=40');

ImageADF.m


function imgADF = ImageADF(img,lambda,K,N)
[m, n] = size(img);
imgADF = zeros(m, n);
img = double(img);
for t = 1 : N
    for i = 2 : m-1
        for j = 2 : n-1
            NI = img(i-1, j) - img(i, j);
            SI = img(i+1, j) - img(i, j);
            EI = img(i, j-1) - img(i, j);
            WI = img(i, j+1) - img(i, j);
            cN = exp(-NI^2/K^2);
            cS = exp(-SI^2/K^2);
            cE = exp(-EI^2/K^2);
            cW = exp(-WI^2/K^2);
            imgADF(i, j) = img(i, j) + lambda*(NI*cN + SI*cS + EI*cE + WI*cW);
        end
    end
    img = imgADF;
end
imgADF = img;
imgADF = uint8(imgADF);
end

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/879152.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】虚函数

一、什么是虚函数 在类的成员函数前加上virtual关键字&#xff0c;这个函数就是虚函数。 虚函数的所用就是完成多态。多态示例如下&#xff1a; class A {public:virtual void func()//虚函数{cout << "A" << endl;}void ftwo()//普通函数{cout <&…

黑神话·悟空藕丝步云履怎么获得?来看这一篇

1、传送到花果山-山脚-青嶂道土地庙。 2、在这里召唤筋斗云飞行岛章节刚开始的的初始位置方向 在这里推荐一款旗舰开放式耳机南卡OE Pro2&#xff0c;在目前有许多开放式耳机产品存在佩戴舒适度低且音质表现非常一般的当下&#xff0c;南卡开放式耳机凭借“非常规”的软硬结合…

Vue2电商平台项目 (三) Search模块、面包屑(页面自己跳自己)、排序、分页器!

文章目录 一、Search模块1、Search模块的api2、Vuex保存数据3、组件获取vuex数据并渲染(1)、分析请求数据的数据结构(2)、getters简化数据、渲染页面 4、Search模块根据不同的参数获取数据(1)、 派发actions的操作封装为函数(2)、设置带给服务器的参数(3)、Object.assign整理参…

智慧宿舍平台|基于Springboot+vue的智慧宿舍系统(源码+数据库+文档)

智慧宿舍系统 目录 基于Springbootvue的智慧宿舍系统 一、前言 二、系统设计 三、系统功能设计 四、数据库设计 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取 博主介绍&#xff1a;✌️大厂码农|毕设布道师&#xff0c;阿里云开发社区乘风者…

java多线程模拟多个售票员从同一个票池售票

程序功能 这段代码模拟了多个售票员从一个有限的票池中售票的过程。主要功能如下&#xff1a; 票池共有50张票&#xff0c;多个售票员&#xff08;线程&#xff09;并发进行售票。 使用同步机制确保线程安全&#xff0c;避免多个售票员同时出售同一张票。 每个售票员不断检查票…

51单片机 - DS18B20实验1-读取温度

上来一张图&#xff0c;明确思路&#xff0c;程序整体裤架如下&#xff0c;通过单总线&#xff0c;单独封装一个.c文件用于单总线的操作&#xff0c;其实&#xff0c;我们可以把点c文件看成一个类操作&#xff0c;其属性就是我们面向对象的函数&#xff0c;也叫方法&#xff0c…

软考中级软件设计师——数据结构与算法基础学习笔记

软考中级软件设计师——数据结构与算法基本概念 什么是数据数据元素、数据项数据结构逻辑结构物理结构&#xff08;存储结构&#xff09; 算法什么是算法五个特性算法效率的度量时间复杂度空间复杂度 什么是数据 数据是信息的载体&#xff0c;是描述客观事物属性的数、字符及所…

【算法】队列与BFS

【ps】本篇有 4 道 leetcode OJ。 目录 一、算法简介 二、相关例题 1&#xff09;N 叉树的层序遍历 .1- 题目解析 .2- 代码编写 2&#xff09;二叉树的锯齿形层序遍历 .1- 题目解析 .2- 代码编写 3&#xff09;二叉树最大宽度 .1- 题目解析 .2- 代码编写 4&#xf…

自养号测评:如何在敦煌网打造爆款与提升店铺权重

敦煌网自养号测评是敦煌网卖家为了提升店铺权重、流量及销量而采取的一种策略。自养号测评指的是卖家自行注册并管理买家账号&#xff0c;通过模拟真实买家行为&#xff0c;为自家店铺进行测评、补单等操作。以下是对敦煌网自养号测评的详细解析&#xff1a; 一、自养号测评的…

Text-to-SQL技术升级 - 阿里云OpenSearch-SQL在BIRD榜单夺冠方法

Text-to-SQL技术升级 - 阿里云OpenSearch-SQL在BIRD榜单夺冠方法 Text-to-SQL 任务旨在将自然语言查询转换为结构化查询语言(SQL),从而使非专业用户能够便捷地访问和操作数据库。近期,阿里云的 OpenSearch 引擎凭借其一致性对齐技术,在当前极具影响力的 Text-to-SQL 任务…

3.接口测试的基础/接口关联(Jmeter工具/场景一:我一个人负责所有的接口,项目规模不大)

一、Jmeter接口测试实战 1.场景一&#xff1a;我一个人负责所有的接口&#xff1a;项目规模不大 http:80 https:443 接口文档一般是开发给的&#xff0c;如果没有那就需要抓包。 请求默认值&#xff1a; 2.请求&#xff1a; 请求方式:get,post 请求路径 请求参数 查询字符串参数…

马匹行为识别系统源码分享

马匹行为识别检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

【自动驾驶】决策规划算法 | 数学基础(三)直角坐标与自然坐标转换Ⅱ

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…

UE5源码Windows编译、运行

官方文档 Welcome To Unreal Engine 5 Early Access Learn what to expect from the UE5 Early Access program. 链接如下&#xff1a;https://docs.unrealengine.com/5.0/en-US/Welcome/#gettingue5earlyaccessfromgithub Step 0&#xff1a;找到UE5源码 直接先上链接 https…

5.内容创作的未来:ChatGPT如何辅助写作(5/10)

引言 在信息爆炸的时代&#xff0c;内容创作已成为连接品牌与受众、传递信息与知识、以及塑造文化与观念的重要手段。随着数字媒体的兴起&#xff0c;内容创作的需求日益增长&#xff0c;对创作者的写作速度和质量提出了更高的要求。人工智能&#xff08;AI&#xff09;技术的…

旧衣回收小程序:开启旧衣回收新体验

随着社会的大众对环保的关注度越来越高&#xff0c;旧衣物回收市场迎来了快速发展时期。在数字化发展当下&#xff0c;旧衣回收行业也迎来了新的模式----互联网旧衣回收小程序&#xff0c;旨在为大众提供更加便捷、简单、透明的旧衣物回收方式&#xff0c;通过手机直接下单&…

在线包装盒型生成工具,各种异型包装盒型,PDF导出方便

1、templatemaker.nl Passepartout ✂ Templatemaker ︎https://www.templatemaker.nl/en/passepartout/这是一个荷兰设计师建的一个在线盒型自动生成工具&#xff0c;包含各类新奇盒型&#xff0c;大家可以一起去观摩一下。 网站首页顶部各种盒型展示&#xff0c;大家根据需…

开源|一个很强大的离线IP地址定位库和IP定位数据管理框架,支持亿级别的数据段

开源|一个很强大的离线IP地址定位库和IP定位数据管理框架&#xff0c;支持亿级别的数据段 不太会写-9527 卓越云阶 2024年09月18日 12:35 贵州 随着互联网技术的飞速发展&#xff0c;IP地址定位已成为许多应用程序中不可或缺的一部分。然而&#xff0c;现有的许多定位库在处理…

刻意练习:舒尔特方格提升专注力

1.功能描述 刻意练习&#xff1a;舒尔特方格提升专注力 如果发现自己存在不够专注的问题&#xff0c;可以通过一个小游戏来提升自己专注力--舒尔特方格。 舒尔特方格的实施步骤如下&#xff1a; 一张纸上画出5X5的空方格。在方格中&#xff0c;没有任何规律的随机填写数字1…

LeetCode_sql_day24(1212.查询球队积分)

描述 表: Teams ------------------------- | Column Name | Type | ------------------------- | team_id | int | | team_name | varchar | ------------------------- team_id 是该表具有唯一值的列。 表中的每一行都代表一支独立足球队。表: Matches…