【CanMV K230 AI视觉】 人体检测

【CanMV K230 AI视觉】 人体检测

  • 人体检测

动态测试效果可以去下面网站自己看。

B站视频链接:已做成合集
抖音链接:已做成合集


人体检测

人体检测是判断摄像头画面中有无出现人体,常用于人体数量检测,人流量监控以及安防监控等。

在这里插入图片描述

'''
实验名称:人体检测
实验平台:01Studio CanMV K230
教程:wiki.01studio.cc
'''


from libs.PipeLine import PipeLine, ScopedTiming
from libs.AIBase import AIBase
from libs.AI2D import Ai2d
import os
import ujson
from media.media import *
from time import *
import nncase_runtime as nn
import ulab.numpy as np
import time
import utime
import image
import random
import gc
import sys
import aicube

# 自定义人体检测类
class PersonDetectionApp(AIBase):
    def __init__(self,kmodel_path,model_input_size,labels,anchors,confidence_threshold=0.2,nms_threshold=0.5,nms_option=False,strides=[8,16,32],rgb888p_size=[224,224],display_size=[1920,1080],debug_mode=0):
        super().__init__(kmodel_path,model_input_size,rgb888p_size,debug_mode)
        self.kmodel_path=kmodel_path
        # 模型输入分辨率
        self.model_input_size=model_input_size
        # 标签
        self.labels=labels
        # 检测anchors设置
        self.anchors=anchors
        # 特征图降采样倍数
        self.strides=strides
        # 置信度阈值设置
        self.confidence_threshold=confidence_threshold
        # nms阈值设置
        self.nms_threshold=nms_threshold
        self.nms_option=nms_option
        # sensor给到AI的图像分辨率
        self.rgb888p_size=[ALIGN_UP(rgb888p_size[0],16),rgb888p_size[1]]
        # 显示分辨率
        self.display_size=[ALIGN_UP(display_size[0],16),display_size[1]]
        self.debug_mode=debug_mode
        # Ai2d实例,用于实现模型预处理
        self.ai2d=Ai2d(debug_mode)
        # 设置Ai2d的输入输出格式和类型
        self.ai2d.set_ai2d_dtype(nn.ai2d_format.NCHW_FMT,nn.ai2d_format.NCHW_FMT,np.uint8, np.uint8)

    # 配置预处理操作,这里使用了pad和resize,Ai2d支持crop/shift/pad/resize/affine,具体代码请打开/sdcard/app/libs/AI2D.py查看
    def config_preprocess(self,input_image_size=None):
        with ScopedTiming("set preprocess config",self.debug_mode > 0):
            # 初始化ai2d预处理配置,默认为sensor给到AI的尺寸,您可以通过设置input_image_size自行修改输入尺寸
            ai2d_input_size=input_image_size if input_image_size else self.rgb888p_size
            top,bottom,left,right=self.get_padding_param()
            self.ai2d.pad([0,0,0,0,top,bottom,left,right], 0, [0,0,0])
            self.ai2d.resize(nn.interp_method.tf_bilinear, nn.interp_mode.half_pixel)
            self.ai2d.build([1,3,ai2d_input_size[1],ai2d_input_size[0]],[1,3,self.model_input_size[1],self.model_input_size[0]])

    # 自定义当前任务的后处理
    def postprocess(self,results):
        with ScopedTiming("postprocess",self.debug_mode > 0):
            # 这里使用了aicube模型的后处理接口anchorbasedet_post_preocess
            dets = aicube.anchorbasedet_post_process(results[0], results[1], results[2], self.model_input_size, self.rgb888p_size, self.strides, len(self.labels), self.confidence_threshold, self.nms_threshold, self.anchors, self.nms_option)
            return dets

    # 绘制结果
    def draw_result(self,pl,dets):
        with ScopedTiming("display_draw",self.debug_mode >0):
            if dets:
                pl.osd_img.clear()
                for det_box in dets:
                    x1, y1, x2, y2 = det_box[2],det_box[3],det_box[4],det_box[5]
                    w = float(x2 - x1) * self.display_size[0] // self.rgb888p_size[0]
                    h = float(y2 - y1) * self.display_size[1] // self.rgb888p_size[1]
                    x1 = int(x1 * self.display_size[0] // self.rgb888p_size[0])
                    y1 = int(y1 * self.display_size[1] // self.rgb888p_size[1])
                    x2 = int(x2 * self.display_size[0] // self.rgb888p_size[0])
                    y2 = int(y2 * self.display_size[1] // self.rgb888p_size[1])
                    if (h<(0.1*self.display_size[0])):
                        continue
                    if (w<(0.25*self.display_size[0]) and ((x1<(0.03*self.display_size[0])) or (x2>(0.97*self.display_size[0])))):
                        continue
                    if (w<(0.15*self.display_size[0]) and ((x1<(0.01*self.display_size[0])) or (x2>(0.99*self.display_size[0])))):
                        continue
                    pl.osd_img.draw_rectangle(x1 , y1 , int(w) , int(h), color=(255, 0, 255, 0), thickness = 2)
                    pl.osd_img.draw_string_advanced( x1 , y1-50,32, " " + self.labels[det_box[0]] + " " + str(round(det_box[1],2)), color=(255,0, 255, 0))
            else:
                pl.osd_img.clear()

    # 计算padding参数
    def get_padding_param(self):
        dst_w = self.model_input_size[0]
        dst_h = self.model_input_size[1]
        input_width = self.rgb888p_size[0]
        input_high = self.rgb888p_size[1]
        ratio_w = dst_w / input_width
        ratio_h = dst_h / input_high
        if ratio_w < ratio_h:
            ratio = ratio_w
        else:
            ratio = ratio_h
        new_w = (int)(ratio * input_width)
        new_h = (int)(ratio * input_high)
        dw = (dst_w - new_w) / 2
        dh = (dst_h - new_h) / 2
        top = int(round(dh - 0.1))
        bottom = int(round(dh + 0.1))
        left = int(round(dw - 0.1))
        right = int(round(dw - 0.1))
        return  top, bottom, left, right

if __name__=="__main__":
    # 显示模式,默认"hdmi",可以选择"hdmi"和"lcd"
    display_mode="lcd"
    if display_mode=="hdmi":
        display_size=[1920,1080]
    else:
        display_size=[800,480]
    # 模型路径
    kmodel_path="/sdcard/app/tests/kmodel/person_detect_yolov5n.kmodel"
    # 其它参数设置
    confidence_threshold = 0.2
    nms_threshold = 0.6
    rgb888p_size=[1920,1080]
    labels = ["person"]
    anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]

    # 初始化PipeLine
    pl=PipeLine(rgb888p_size=rgb888p_size,display_size=display_size,display_mode=display_mode)
    pl.create()
    # 初始化自定义人体检测实例
    person_det=PersonDetectionApp(kmodel_path,model_input_size=[640,640],labels=labels,anchors=anchors,confidence_threshold=confidence_threshold,nms_threshold=nms_threshold,nms_option=False,strides=[8,16,32],rgb888p_size=rgb888p_size,display_size=display_size,debug_mode=0)
    person_det.config_preprocess()

    clock = time.clock()

    try:
        while True:

            os.exitpoint()

            clock.tick()

            img=pl.get_frame()  # 获取当前帧数据
            res=person_det.run(img)  # 推理当前帧
            person_det.draw_result(pl,res)  # 绘制结果到PipeLine的osd图像
            print(res) # 打印结果
            pl.show_image()  # 显示当前的绘制结果
            gc.collect()

            print(clock.fps()) #打印帧率

    #IDE中断注销相关对象,释放资源
    except Exception as e:
        sys.print_exception(e)
    finally:
        person_det.deinit()
        pl.destroy()
使用类说明
PersonDetectionApp人体检测

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/874808.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

“版权护航·星影计划”暨电影《末代天师》发布仪式

2024 年 9 月 10 日&#xff0c;由华纳星辰&#xff08;北京&#xff09;文化传媒有限公司与浙江焱煌影视文化传媒有限公司共同主办的 “版权护航・星影计划” 暨网络电影《末代天师》新闻发布会&#xff0c;在北京渔阳饭店世纪宴会厅华彩盛启。 北京影视艺术学会会长张连生、中…

springboot luttuc redis 集成protobuf,手动序列化反序列化

前置需知&#xff1a; 1.本文章和网上大部分博客配置不太一样&#xff0c;各位看官要分析一下自己的需求。集成protobuf 本文章主要是手动调用protobuf的序列化方法&#xff0c;而不是交由springboot 去做&#xff0c;会偏向原生java 使用方式 2.由于为了和公司其他的项目达成…

每日OJ_牛客_合唱团(打家劫舍dp)

目录 牛客_合唱团&#xff08;打家劫舍dp&#xff09; 解析代码1 解析代码2 牛客_合唱团&#xff08;打家劫舍dp&#xff09; 合唱团__牛客网 有 n 个学生站成一排&#xff0c;每个学生有一个能力值&#xff0c;牛牛想从这 n 个学生中按照顺序选取 k 名学生&#xff0c;要求…

【Linux】文件权限与类型全解:你的文件安全指南

欢迎来到 CILMY23 的博客 &#x1f3c6;本篇主题为&#xff1a;文件权限与类型全解&#xff1a;你的文件安全指南 &#x1f3c6;个人主页&#xff1a;CILMY23-CSDN博客 &#x1f3c6;系列专栏&#xff1a;Python | C | C语言 | 数据结构与算法 | 贪心算法 | Linux | 算法专题…

EmguCV学习笔记 VB.Net 11.5 目标检测

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。 教程VB.net版本请访问…

Day7 | Java框架 | SpringMVC

Day7 | Java框架 | SpringMVC SpringMVC简介SpringMVC 概述入门案例入门案例工作流程分析Controller 加载控制与业务bean加载控制&#xff08;SpringMVC & Spring&#xff09;PostMan 请求与响应请求映射路径请求方式&#xff08;不同类型的请求参数&#xff09;&#xff1…

基于JAVA+SpringBoot+Vue的前后端分离企业oa管理系统

基于JAVASpringBootVue的前后端分离企业oa管理系统 前言 ✌全网粉丝20W,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末附源码下载链接&#x1…

信号保存和处理

把上一篇回顾一下吧&#xff1a;共享内存区是最快的IPC形式。一旦这样的内存映射到共享它的进程的地址空间&#xff0c;这些进程间数据传递不再涉及到内核&#xff0c;进程不再通过执行进入内核的系统调用来传递彼此的数据 共享内存的数据结构&#xff1a; struct shmid_ds {…

Vant 按需引入导致 Typescript,eslint 报错问题

目录 1&#xff0c;按需引入问题2&#xff0c;Typescript 报错解决3&#xff0c;eslint 报错解决 1&#xff0c;按需引入问题 vant4 通过 按需引入的配置 使用组件时&#xff0c;会同时将样式也自动导入。所以可直接使用相关的 API 和组件&#xff0c;不会有问题。比如&#x…

Elasticsearch基础(七):Logstash如何开启死信队列

文章目录 Logstash如何开启死信队列 一、确保 Elasticsearch 输出插件启用 DLQ 支持 二、配置 Logstash DLQ 设置 三、查看死信队列 四、排查 CSV 到 Elasticsearch 数据量不一致的问题 Logstash如何开启死信队列 在 Logstash 中&#xff0c;死信队列&#xff08;Dead Le…

QT 联合opencv 易错点

https://blog.csdn.net/qq_51699436/article/details/135777911 网上已经有大量优秀切详尽的文章来讲述QT联合opencv了&#xff0c;我把容易出错的点列出来备忘 1、在进行opencv进行编译时&#xff0c;要确认好是32位还是64位&#xff0c;因为在创建QT项目的时候QT和opencv要匹…

基于R语言的统计分析基础:使用ggplot2包进行绘图

安装ggplot2包并查看官方文档 ggplot2是一个基于图形语法的R包&#xff0c;它允许用户通过声明式方式指定数据、美学映射和图形元素来灵活创建复杂且美观的可视化图表。 ggplot2包官方教学文档&#xff1a;ggplot2官方文档 在R语言中安装ggplot2有两种方法&#xff1a; 安装整…

【自动驾驶】控制算法(八)横向控制Ⅱ | Carsim 与 Matlab 联合仿真基本操作

写在前面&#xff1a; &#x1f31f; 欢迎光临 清流君 的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落。&#x1f4dd; 个人主页&#xff1a;清流君_CSDN博客&#xff0c;期待与您一同探索 移动机器人 领域的无限可能。 &#x1f50d; 本文系 清流君 原创之作&…

GEE 将本地 GeoJSON 文件上传到谷歌资产

在地理信息系统&#xff08;GIS&#xff09;领域&#xff0c;Google Earth Engine&#xff08;GEE&#xff09;是一个强大的平台&#xff0c;它允许用户处理和分析大规模地理空间数据。本文将介绍如何使用 Python 脚本批量上传本地 GeoJSON 文件到 GEE 资产存储&#xff0c;这对…

初识C++|继承

&#x1f36c; mooridy-CSDN博客 &#x1f9c1;C专栏&#xff08;更新中&#xff01;&#xff09; 目录 1. 继承的概念及定义 1.1 继承的概念 1.2 继承定义 1.2.1 定义格式 1.2.2 继承父类成员访问方式的变化 1.3继承类模板 2. 父类和子类对象赋值兼容转换 3. 继承中的…

国内外大模型汇总(包括科大星火、文心一言、通义千问、智普清言、华为大模型)

国内外大模型汇总 1. 科大讯飞星火认知大模型 主要特点&#xff1a; 多语言能力&#xff1a;以中文为核心&#xff0c;同时支持多语言处理&#xff0c;能够进行跨语种的语言理解和生成。 广泛的任务能力&#xff1a;具备内容生成、语言理解、知识问答、推理、数学计算、代码…

数学建模笔记—— 主成分分析(PCA)

数学建模笔记—— 主成分分析 主成分分析1. 基本原理1.1 主成分分析方法1.2 数据降维1.3 主成分分析原理1.4 主成分分析思想 2. PCA的计算步骤3. 典型例题4. 主成分分析说明5. python代码实现 主成分分析 1. 基本原理 在实际问题研究中,多变量问题是经常会遇到的。变量太多,无…

小怡分享之栈和队列

前言&#xff1a; &#x1f308;✨前面小怡给大家分享了顺序表和链表&#xff0c;今天小怡给大家分享一下栈和队列。 1.栈 1.1 概念 栈&#xff1a;一种特殊的线性表&#xff0c;其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#x…

WPF中依赖属性或附加属性的继承

引言 我们可以轻易的编写一个附加属性类&#xff0c;增加任意类型的附加属性并编写一定的逻辑来处理附加值的变化通知。假如控件是我们自定义的一个label、button 、textbox等&#xff0c;自定义控件当然是其他基础类型元素的组合&#xff0c;如shape、line、rectangle、geome…

针对SVM算法初步研究

归纳编程学习的感悟&#xff0c; 记录奋斗路上的点滴&#xff0c; 希望能帮到一样刻苦的你&#xff01; 如有不足欢迎指正&#xff01; 共同学习交流&#xff01; &#x1f30e;欢迎各位→点赞 &#x1f44d; 收藏⭐ 留言​&#x1f4dd;心态决定高度&#xff0c;细节决定成败…