针对SVM算法初步研究

归纳编程学习的感悟,
记录奋斗路上的点滴,
希望能帮到一样刻苦的你!
如有不足欢迎指正!
共同学习交流!
🌎欢迎各位→点赞 👍+ 收藏⭐ + 留言​📝

心态决定高度,细节决定成败!

  

初识SVM算法:

        支持向量机(Support Vector Machine, SVM)是一种监督学习算法,主要用于分类和回归分析。SVM的基本模型是定义在特征空间上的间隔最大的线性分类器,其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。在分类任务中,SVM试图找到一个超平面来区分不同类别的数据,这个超平面不仅需要正确地分类训练数据,而且还要确保两类数据到这个超平面的距离最大化,这样可以使得模型具备更好的泛化能力。

        SVM能够执行线性或非线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。

超平⾯最⼤间隔

下面左图显示了三种可能的线性分类器的决策边界,虚线代表的模型表现⾮常糟糕,甚⾄都⽆法正确实现分类。

其余两个模型(红线和紫线)在训练集上表现比较完美,但是它们的决策边界与实例过于接近,导致在⾯对新实例时,表现可能不会太好。

而下面右图中的实线代表不仅分离了两个类别,且尽可能远离最近的训练实例

硬间隔和软间隔:

硬间隔分类:

        在上面我们使用超平面进行分割数据的过程中,如果我们严格地让所有实例都不在最大间隔之间,并且位于正确的一边,这就是硬间隔分类。

        硬间隔分类有两个问题,首先,它只在数据是线性可分离的时候才有效;其次,它对异常值非常敏感。

软间隔分类:

        要避免这些问题,最好使用更灵活的模型。目标是尽可能在保持最大间隔宽阔和限制间隔违例(即位于最大间隔之上,甚至在错误的一边的实例)之间找到良好的平衡,这就是软间隔分类。

下面我们来用python写一个简单的SVM模型:

使用Python实现一个简单的SVM算法,可以使用scikit-learn库,这是一个非常流行的机器学习库,它提供了SVM的支持。

首先,需要安装scikit-learn,可以通过pip来安装:

pip install scikit-learn

# 导入必要的库
from sklearn import svm  # SVM分类器
from sklearn.datasets import make_blobs  # 生成模拟数据
import numpy as np  # 数值计算库

# 生成一些随机数据点,分成两组
X, y = make_blobs(n_samples=50, centers=2, random_state=0, cluster_std=0.60)

# 创建一个线性核函数的SVM分类器
# kernel='linear' 指定使用线性核函数
# C=1.0 是惩罚参数C的倒数,表示对误分类的容忍度
clf = svm.SVC(kernel='linear', C=1.0)

# 使用生成的数据训练SVM模型
# fit方法接受特征矩阵X和目标向量y
clf.fit(X, y)

# 生成两个新的数据点,准备用于预测
new_data = np.array([[0, 0], [1, 1]])

# 使用训练好的模型对新数据点进行预测
predictions = clf.predict(new_data)

# 打印预测结果
print("Predictions:", predictions)

代码解释:

  1. 导入必要的库

    • sklearn:Scikit-Learn库,提供了各种机器学习算法。
    • numpy:用于数值运算的库。
  2. 生成数据

    • make_blobs函数用于生成一组模拟的聚类数据点。
    • n_samples参数指定要生成的数据点数量。
    • centers参数指定中心点的数量,本例中为2,意味着生成的数据将大致分为两组。
    • random_state用于设置随机种子,保证每次运行生成相同的数据。
    • cluster_std参数指定了簇的标准差,用来控制生成数据的分散程度。
  3. 创建SVM分类器

    svm.SVC()创建一个支持向量分类器对象。kernel='linear'参数指定使用线性核函数,即寻找一个线性决策边界。C=1.0参数控制了对误分类的惩罚程度,较大的C值意味着模型对误分类的容忍度更低。
  4. 训练模型

    fit(X, y)方法用于训练模型,其中X是特征矩阵,y是目标向量。
  5. 预测新数据

    predict(new_data)方法用于对新的数据点进行分类预测。
  6. 输出结果

    最后,打印出对新数据点的预测结果。

        这个示例展示了如何使用scikit-learnSVC类创建并训练一个简单的线性SVM分类器,并使用该分类器对新的数据点进行预测。这种类型的SVM非常适合处理线性可分的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/874775.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

从OracleCloudWorld和财报看Oracle的转变

2024年9月9-12日Oracle Cloud World在美国拉斯维加斯盛大开幕 押注AI和云 Oracle 创始人Larry Ellison做了对Oracle战略和未来愿景的主旨演讲,在演讲中Larry将AI技术和云战略推到了前所未有的高度,从新的Oracle 23c改名到Oracle23ai,到Oracl…

活动|华院计算宣晓华受邀出席“AI引领新工业革命”大会,探讨全球科技的最新趋势

8月31日,“AI引领新工业革命”大会于上海图书馆圆满落幕。本次大会由TAA校联会和台协科创工委会联合主办,得到上海市台办、上海市台联、康师傅的大力支持。大会邀请了NVIDIA全球副总裁、亚太区企业营销负责人刘念宁,元禾厚望资本创始合伙人潘…

828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统

828华为云征文|华为云Flexus X实例docker部署Jitsi构建属于自己的音视频会议系统 华为云最近正在举办828 B2B企业节,Flexus X实例的促销力度非常大,特别适合那些对算力性能有高要求的小伙伴。如果你有自建MySQL、Redis、Nginx等服务的需求&a…

[Web安全 网络安全]-文件包含漏洞

文章目录: 一:前言 1.什么是文件包含漏洞 2.文件包含漏洞的成因 3.文件包含漏洞的分类 4.文件包含漏洞的防御策略 5.文件包含函数(触发点Sink) 6.环境 6.1 靶场 6.2 其他工具 二:文件包含LFI labs靶场实验…

docker-01 创建一个自己的镜像并运行容器

docker-01 创建一个自己的镜像并运行容器 前言 我们都知道使用Docker的镜像可以快速创建和部署应用,大大的节约了部署的时间。并且Docker 的镜像提供了除内核外完整的运行时环境,确保代码的环境一致性,从而不会在出现这段代码在我机器上没问…

YoloV10改进策略:上采样改进|动态上采样|轻量高效,即插即用(适用于分类、分割、检测等多种场景)

摘要 本文使用动态上采样改进YoloV10,动态上采样是今天最新的上采样改进方法,具有轻量高效的特点,经过验证,在多个场景上均有大幅度的涨点,而且改进方法简单,即插即用! 论文:《DySample:Learning to Upsample by Learning to Sample》 论文:https://arxiv.org/pdf/…

老旧电力系统安全隐患增加 该如何预防电气线路老化等因素引发的电气火灾呢?

为应对我国电气火灾事故频发的挑战,安科瑞电气股份有限公司开发了AcrelCloud-6000安全用电管理云平台。这一平台依托移动互联网和云计算技术,结合物联网传感器,将办公楼、学校、医院、工厂、体育场馆、宾馆及福利院等人员密集场所的电气安全数…

0x07 Nginx越界读取缓存漏洞 CVE-2017-7529 复现

参考: Nginx越界读取缓存漏洞 CVE-2017-7529 | PeiQi文库 (wgpsec.org)Nginx越界读取缓存漏洞(CVE-2017-7529)复现分析 - qweg_focus - 博客园 (cnblogs.com) 一、fofa 搜索 nginx && port"80" 我这里写了个脚本将ip保存…

启明云端乐鑫代理商,乐鑫ESP32无线芯片方案,物联网设备WiFi联动控制

随着智能和远程技术的飞速发展,物联网(IoT)逐渐出现在我们生活的每一个角落。乐鑫以其创新的无线通信技术,正成为智能家居、工业自动化和医疗设备等领域的推动者。 无线WiFi芯片模组不仅提供了强大的数据处理能力,还赋予了设备以直观的交互方…

Web 基础——Apache

Event Worker 的升级版、把服务器进程和连接进行分析,基于异步 I/O 模型。 请求过来后进程并不处理请求,而是直接交由其它机制来处理,通过 epoll 机制来通知请求是否完成; 在这个过程中,进程本身一直处于空闲状态&am…

Qt常用控件——QLCDNumber

文章目录 QLCDNumber核心属性倒计时小程序倒计时小程序相关问题 QLCDNumber核心属性 QLCDNumber是专门用来显示数字的控件,类似于这样: 属性说明intValue获取的数字值(int).value获取的数字值(double)和intValue是联动的例如value设为1.5,in…

第十一周:机器学习

第十一周周报 摘要Abstract机器学习1. 注意力机制(下)1.1 multi-head self-attention(多头注意力机制)1.2 Positional Encoding(位置编码)1.3 truncated self attention(截断式注意力机制&#…

即插即用篇 | YOLOv8 引入高效的直方图Transformer模块 | 突破天气障碍:Histoformer引领高效图像修复新路径“

本改进已同步到YOLO-Magic框架! 摘要:摘要。基于Transformer的恶劣天气图像修复方法取得了显著进展。大多数方法通过沿通道维度或在空间上固定范围的块内使用自注意力,以减少计算负担。然而,这种折中方式在捕获长距离空间特征方面存在局限性。受到恶劣天气导致的退化因素主…

黑马点评18——多级缓存-OpenResty

文章目录 安装OpenRestyOpenResty快速入门OpenResty获取请求参数封装Http请求向Tomcat发送http请求根据商品id对tomcat集群负载均衡Redis缓存预热查询Redis缓存Nginx本地缓存 安装OpenResty 安装参考博客 OpenResty快速入门 nginx是没有业务能力的,我们是把请求转发…

NLP基础及其代码-BERT系列

1.基础知识 BERT系列RoBERTa ALBERT ERINE详解与使用学习笔记-腾讯云开发者社区-腾讯云 (tencent.com) 2.BERT 分词:wordpiece 预训练: mask:选择15%的分词进行mask(80%mask 10%随机替换分词 10%分词保持不变) NSP…

替换传统数据处理平台,TDengine 与华风数据达成合作

在全球能源转型的大背景下,新能源产业正迎来前所未有的发展机遇。随着国家对可再生能源的政策支持和市场需求的不断增长,风电、光伏和储能等新能源项目如雨后春笋般蓬勃发展。然而,随之而来的数据处理与管理挑战也日益凸显。面对海量的设备运…

构建常态化安全防线:XDR的态势感知与自动化响应机制

当前,网络安全威胁日益复杂多变,企业正面临前所未有的严峻挑战。为有效应对这些挑战,态势感知与自动化响应机制在提升网络安全运营效率与防御效果中扮演着至关重要的角色。它们能够实时监测网络状态,智能分析潜在威胁,…

Spring Cloud之二 微服务注册

1&#xff1a;Intellij 新建服务 user-service 2&#xff1a;pom.xml <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"…

[leetcode-python]杨辉三角2

给定一个非负索引 rowIndex&#xff0c;返回「杨辉三角」的第 rowIndex 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 示例 1: 输入: rowIndex 3 输出: [1,3,3,1]示例 2: 输入: rowIndex 0 输出: [1]示例 3: 输入: rowIndex 1 输出: [1,1]提示…

如何将 Electron 项目上架 Apple Store

前言 Electron 是一个开源框架,它允许开发者使用 Web 技术(HTML、CSS 和 JavaScript)来构建跨平台的桌面应用程序。 Electron 应用程序可以运行在 Windows、macOS 和 Linux 上,为用户提供了一种统一的方式来开发和维护软件。 本文将探讨如何将 Electron 构建的桌面应用程…