线性代数 第六讲 特征值和特征向量_相似对角化_实对称矩阵_重点题型总结详细解析

文章目录

  • 1.特征值和特征向量
    • 1.1 特征值和特征向量的定义
    • 1.2 特征值和特征向量的求法
    • 1.3 特征值特征向量的主要结论
  • 2.相似
    • 2.1 相似的定义
    • 2.2 相似的性质
    • 2.3 相似的结论
  • 3.相似对角化
  • 4.实对称矩阵
    • 4.1 实对称矩阵的基本性质
    • 4.2 施密特正交化
  • 5.重难点题型总结
    • 5.1 判断矩阵能否相似对角化
    • 5.2 已知两个矩阵相似,求某个矩阵中的未知参数
    • 5.3 相似时,求可逆矩阵P,使得P^-1^AP为对角矩阵
    • 5.4 求正交矩阵Q,使Q^T^AQ=Λ
    • 5.5 给出条件矩阵A方=A,我们能分析出什么?
    • 5.6 已知A为三阶实对称矩阵,三个特征值组成形式为(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量

1.特征值和特征向量

1.1 特征值和特征向量的定义

A为n阶,α是n维非0列向量
Aα=λα,α叫A对应λ的特征向量,叫λ特征值

1.2 特征值和特征向量的求法

⭐️三种求法:

  • 方法一:利用定义Aα=λα
  • 方法二:|λE-A|=0,利用行列式和基础解系
  • 方法三:利用相似,P-1AP=B

方法一:
定义法,定义法常常用于A是抽象形式的矩阵,求解其特征值和特征向量的问题。

方法二:
理论基础:
由定义 A α = λ α , α ≠ 0 ⇒ ( λ E − A ) α = 0 , α ≠ 0 ⇒ α 是 ( λ E − A ) x = 0 的非 0 解 由定义A\alpha = \lambda \alpha ,\alpha \neq 0\\\Rightarrow \left(\lambda E - A\right)\alpha = 0,\alpha \neq 0\\\Rightarrow \alpha 是\left(\lambda E - A\right)x = 0的非0解 由定义Aα=λαα=0(λEA)α=0,α=0α(λEA)x=0的非0

为什么先用行列式计算特征值,特征向量不能是零向量,所以是非零解,齐次线性方程是非零解,所以行列式=0,所以用行列式计算特征值,再用基础解系计算特征向量。

一.常规计算步骤
特征值的计算步骤:
第一步,计算行列式|λE-A|,因为存在非零解,秩必然是不满的,行列式=0,求出特征值。

第二步,通过求出的特征向量,代入回(λE-A)α=0这个齐次线性方程中,计算出特征向量即齐次线性方程的解向量。

二.通过已积累的结论,直接得出特征值
(1)上下三角矩阵,对角矩阵的特征值就是矩阵主对角线上的元素。
[ 1 2 4 0 3 5 0 0 6 ] , 特征值为 λ 1 = 1 , λ 2 = 3 , λ 3 = 6 \left[\begin{matrix} 1 & 2 & 4 \\ 0 & 3 & 5 \\ 0 & 0 & 6 \\ \end{matrix}\right],特征值为\lambda _{1} = 1,\lambda _{2} = 3,\lambda _{3} = 6 100230456 ,特征值为λ1=1λ2=3λ3=6

(2)秩1矩阵,特征值是它的迹,其余都是0
[ a a a a a a a a a ] 特征值为 λ 1 = 3 a , λ 2 = 0 , λ 3 = 0 \left[\begin{matrix} a & a & a \\ a & a & a \\ a & a & a \\ \end{matrix}\right]特征值为\lambda _{1} = 3a,\lambda _{2} = 0,\lambda _{3} = 0 aaaaaaaaa 特征值为λ1=3aλ2=0λ3=0
(3)通过已知矩阵A的特征值和特征向量,直接得到关于A矩阵其他基本变形的特征值和特征向量

在这里插入图片描述
f(A)多项式与A相似

1.3 特征值特征向量的主要结论

  1. 如a1a2是矩阵A关于特征值λ的特征向量,则k1a1+k2a2(非0时)仍是A关于λ的的特征向量。若a1a2是不同特征值的特征向量,则k1a1+k2a2不是A关于λ的的特征向量

∣ A ∣ = Π λ i , 其中 Π 是连乘 Σ λ i = Σ a i i = t r ( A ) , 矩阵的迹是特征值的和 \left|A\right| = \Pi \lambda _{i},其中\Pi 是连乘\\\Sigma \lambda _{i} = \Sigma a_{ii} = t_{r}\left(A\right),矩阵的迹是特征值的和 A=Πλi,其中Π是连乘Σλi=Σaii=tr(A),矩阵的迹是特征值的和

3.不同特征值的特征向量线性无关
4.λi是属于A的k重特征值,属于λi的k重特征向量最多不超过k个。

2.相似

2.1 相似的定义

相似的定义:
A矩阵相似于B,A~B,意味着存在可逆矩阵P使P-1AP=B

注意注意:A相似于B,这句话是有方向性的,规定是P-1AP=B,而B=PAP-1,A相似于B不能颠倒,没有P-1BP=A这种说法

2.2 相似的性质

A~B,则有以下结论
(1)|A|=|B|
(2)r(A)=r(B)
(3)|λE-A|=|λE-B|,即λAB
(4)迹相同,特征值都相同,迹肯定相同
(5)A,B的各阶主子式之和分别相等

关于性质(5)的说明,各阶主子式就是选行和选列的时候,行下标和列下标是一样的,下面给出列子,给出三阶矩阵,求二阶主子式,二阶主子式仅适合用于0多的题
[ 1 2 3 4 5 6 7 8 9 ] ,二阶主子式, [ 1 2 4 5 ] , [ 1 3 4 6 ] , [ 2 3 5 6 ] , [ 4 5 7 8 ] , [ 4 6 7 9 ] , [ 5 6 8 9 ] \left[\begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ \end{matrix}\right],二阶主子式,\left[\begin{matrix} 1 & 2 \\ 4 & 5 \\ \end{matrix}\right],\left[\begin{matrix} 1 & 3 \\ 4 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 2 & 3 \\ 5 & 6 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 5 \\ 7 & 8 \\ \end{matrix}\right],\left[\begin{matrix} 4 & 6 \\ 7 & 9 \\ \end{matrix}\right],\left[\begin{matrix} 5 & 6 \\ 8 & 9 \\ \end{matrix}\right] 147258369 ,二阶主子式,[1425][1436][2536][4758][4769][5869]

(6)充要条件 A~B, A+kE~B+kE

2.3 相似的结论

A与B相似的进一步推导结论
在这里插入图片描述
矩阵A与B相似

  • A-1相似于B-1
  • A*相似于B*
  • AT相似于BT
  • 关于分块矩阵
    若 A ~ C , B ~ D , 则 [ A O O B ] ~ [ C O O D ] 若A~C,B~D,则\left[\begin{matrix} A & O \\ O & B \\ \end{matrix}\right]~\left[\begin{matrix} C & O \\ O & D \\ \end{matrix}\right] ACBD,[AOOB][COOD]

3.相似对角化

A为n阶矩阵,存在n阶可逆矩阵P,若P-1AP=Λ,则称A可相似对角化,记做A~Λ,称对角矩阵是A的相似标准型。

关于相似对角化的结论总结:
在这里插入图片描述

注意充要条件和充分条件

4.实对称矩阵

4.1 实对称矩阵的基本性质

关于实对称矩阵,有更良好的性质,直接就满足可以相似对角化,并且还可以用正交矩阵相似对角化

实对称矩阵AT=A
1.实对称矩阵必与对角矩阵相似(可相似对角化)
2.实对称矩阵特征值不同特征向量相互正交
3.实对称矩阵可用正交矩阵相似对角化
Q-1AQ=QTAQ=Λ

因为QQT=E,.Q-1=QT

4.2 施密特正交化

根据 实对称矩阵的基本性质,不同特征值的特征向量相互正交,所以我们应该使用施密特正交化将相同特征值下的特征向量正交化,最后特征向量都要单位化。

施密特正交化公式:
在这里插入图片描述

5.重难点题型总结

5.1 判断矩阵能否相似对角化

例题1:来源 李永乐线代辅导讲义例5.15
在这里插入图片描述

例题2:来源 李永乐线代辅导讲义 例5.18
在这里插入图片描述

5.2 已知两个矩阵相似,求某个矩阵中的未知参数

解题思路:常常利用两个矩阵相似的性质,若相似矩阵之间的迹相等,行列式相等,各阶主子式之和相等

5.3 相似时,求可逆矩阵P,使得P-1AP为对角矩阵

利用相似的传递性

例题1:来源 李永乐线代辅导讲义例5.20
在这里插入图片描述

5.4 求正交矩阵Q,使QTAQ=Λ

例题1:来源 李永乐线代辅导讲义例5.27
在这里插入图片描述

5.5 给出条件矩阵A方=A,我们能分析出什么?

有些题目中,给出矩阵A2=A的时候,我们可以得到两方面信息,一方面是关于秩,一方面是关于特征值。

关于秩:
A 2 = A ⇒ A 2 − A = 0 ⇒ A ( A − E ) = 0 ⇒ r ( A ) + r ( A − E ) ≤ n A − ( A − E ) = E ⇒ r ( A ) + r ( B ) ≥ r ( A + B ) ⇒ r ( A ) + r ( A − E ) ≥ r ( E ) = n 综上所述,结论如下: r ( A ) + r ( A − E ) = n A^{2} = A\Rightarrow A^{2} - A = 0\Rightarrow A\left(A - E\right) = 0\Rightarrow r\left(A\right) + r\left(A - E\right) \leq n\\A - \left(A - E\right) = E\Rightarrow r\left(A\right) + r\left(B\right) \geq r\left(A + B\right)\Rightarrow r\left(A\right) + r\left(A - E\right) \geq r\left(E\right) = n\\综上所述,结论如下:r\left(A\right) + r\left(A - E\right) = n A2=AA2A=0A(AE)=0r(A)+r(AE)nA(AE)=Er(A)+r(B)r(A+B)r(A)+r(AE)r(E)=n综上所述,结论如下:r(A)+r(AE)=n

关于特征值:
在这里插入图片描述

5.6 已知A为三阶实对称矩阵,三个特征值组成形式为(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量

先不谈这个问题,明确该类问题大方向
首先矩阵一定得是实对称的,因为它的底层原理是实对称向量内积=0
1.假如已知三个特征值,但是它们都是单根,已知一个特征值的特征向量,是无法求出另外两个特征向量的。
2.假如已知A的三个特征值的组成形式是(二重根+单根)和单根特征值的对应的特征向量,求另外两个特征向量,这是可以求出的。
3.假如已知A的三个特征值的组成形式是(二重根+单根)和重根特征值的对应的两个特征向量,求单根的特征向量,也是可以求出的。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/874494.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

QT——事件处理机制(9.10)

用C写个闹钟 要求一个标签类显示时间&#xff0c;一个行编辑类输入闹钟时间&#xff0c;两个按钮组件分别控制启动和取消。 1.头文件&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QTimer> //定时器类 #include <QTime…

数据集 CrowdPose 多人姿态估计 深度学习 >> DataBall

数据集 CrowdPose 多人姿态估计 深度学习 CrowdPose 数据集 这是一个用于探讨在拥挤场景中的多人姿态估计的图像数据集。该数据集包括 2 万张图像和标注有 14 个关键点的 8 万个人体姿势&#xff0c;其中测试集包括 8,000 张图像。 article{li2018crowdpose, title{CrowdPose…

新闻资讯类APP流量变现技巧——提升广告变现收益

新闻资讯类APP拥有庞大的用户基础&#xff0c;始终拥有较强的广告变现能力&#xff0c;如何在激烈的行业竞争中凸显媒体的优势&#xff0c;进而吸引更多的广告主&#xff1f;优化核心场景广告样式的同时&#xff0c;挖掘更多的广告场景样式&#xff1f;如何把握好广告变现和用户…

Whistle 客户端抓包工具

Whistle 客户端 安装或更新 官网&#xff1a; 关于whistle GitBook (wproxy.org)https://wproxy.org/whistle/ Whistle 客户端目前只支持 Mac 和 Windows 系统&#xff0c;如果需要在 Linux、 Docker、服务端等其它环境使用&#xff0c;可以用命令行版本&#xff1a;GitHub…

JAVA- 多线程

一&#xff0c;多线程的概念 1.并行与并发 并行&#xff1a;多个任务在同一时刻在cpu 上同时执行并发&#xff1a;多个任务在同一时刻在cpu 上交替执行 2.进程与线程 进程&#xff1a;就是操作系统中正在运行的一个应用程序。所以进程也就是“正在进行的程序”。&#xff0…

【动态规划】子序列问题二(数组中不连续的一段)

子序列问题二 1.最长定差子序列2.最长的斐波那契子序列的长度3.最长等差数列4.等差数列划分 II - 子序列 点赞&#x1f44d;&#x1f44d;收藏&#x1f31f;&#x1f31f;关注&#x1f496;&#x1f496; 你的支持是对我最大的鼓励&#xff0c;我们一起努力吧!&#x1f603;&am…

如何提取 R 语言内置数据集和著名 R 包的数据集

大家好&#xff0c;今天我们来聊一聊在 R 语言中如何提取内置数据集&#xff0c;以及如何使用著名 R 包中的数据集。相信很多同学在学习 R 语言时&#xff0c;都会遇到需要用数据集来做练习或者分析的情况。在 R 里&#xff0c;数据集资源非常丰富&#xff0c;R 本身自带了许多…

跨部门SOP与统一知识库:打破信息孤岛,促进团队协作

引言&#xff1a; 在当今这个快速变化且高度竞争的商业环境中&#xff0c;企业面临着前所未有的挑战&#xff0c;其中之一便是如何高效地跨越部门界限&#xff0c;实现无缝协作。传统的组织结构往往导致信息孤岛的出现&#xff0c;不同部门间流程不一致、信息不共享&#xff0…

shader 案例学习笔记之step函数

step函数 step(edge,x)&#xff1a;当x>edge时返回1&#xff0c;否则返回0 #ifdef GL_ES precision mediump float; #endifuniform vec2 u_resolution;void main(){vec2 st gl_FragCoord.xy/u_resolution.xy;float f step(0.5, st.x);gl_FragColor vec4(f, 0, 0, 1.0); …

yolo训练出现Could not load library libcudnn_cnn_train.so.8问题及解决方法

问题场景&#xff1a; 训练yolov5或者yolov8时候会报错&#xff1a; Could not load library libcudnn_cnn_train.so.8. Error: /usr/local/cuda-12.1/lib64/libcudnn_cnn_train.so.8: uined symbol: _ZN5cudnn3cnn34layerNormFwd_execute_internal_implERKNS_7backend11Vari…

web前端-HTML常用标签(三)

一、表格标签 表格是实际开发中非常常用的标签: 1.表格的主要作用&#xff1a; 表格主要用于显示、展示数据&#xff0c;因为它可以让数据显示的非常的规整&#xff0c;可读性非常好。特别是后台展示数据的时候&#xff0c;能够熟练运用表格就显得很重要。一个清爽简约的表格…

火柴人跑酷

运行图片&#xff1a; 这里面有三个boss&#xff0c;和各种元素属性列举一下&#xff1a; 元素作用 火 运用火元素将攻击抵消 水 和火元素一致 磁 自动吸取经验…

MySQL数据表操作

目录 常用数据类型 数值类型 整型 浮点型 字符串类型 日期类型 数据表的操作 查看表结构 创建表 约束 删除表 修改表 添加列 删除列 修改列的定义 重命名列 重命名表 总结 在学习了数据库操作之后&#xff0c;我们接着来看数据表的相关操作 我们首先来学习 …

农产品管理与推荐系统Python+Django网页界面+计算机毕设项目+推荐算法

一、介绍 农产品管理与推荐系统。本系统使用Python作为主要开发语言&#xff0c;前端使用HTML&#xff0c;CSS&#xff0c;BootStrap等技术和框架搭建前端界面&#xff0c;后端使用Django框架处理应用请求&#xff0c;使用Ajax等技术实现前后端的数据通信。实现了一个综合性的…

乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数2007-2021年

2007-2021年乡村旅游指标-最美乡村数、旅游示范县数、旅行社数、景区数、农家乐数.zip资源-CSDN文库https://download.csdn.net/download/2401_84585615/89504677 本文分析的数据集涵盖了中国31个省区市的乡村旅游相关指标&#xff0c;包括从业人数、美丽乡村数量、乡村旅游示…

MPLAB V8.92烧写hex

打开hex文件 File\Import … *.hex文件2. 选择烧录器 Programmer\Select programmer -PICKit3/MPLAB ICD2 3.烧录程序 Programmer\program

ES6标准---【三】【学习ES6看这一篇就够了!!!】

目录 ES6以往文章 ES6之前函数默认值参数的处理方法 ES6函数参数的默认值 与结构赋值默认值结合使用 参数默认值的位置&#xff1a; 函数的length属性 作用域 参数的默认值是一个函数 正确理解函数默认值的例子 应用 指定某一个函数参数不得省略&#xff0c;如果省略…

大模型LLM:合成训练样本的数据分布问题

近几天在研究大模型LLM数数问题时&#xff0c;使用合成数据集来训练LLM“统计字符串&#xff08;100个单词以内&#xff09;中字母的个数”的能力&#xff0c;基于Word进行分词。原始的合成代码在生成随机字符串时&#xff0c;采用如下代码&#xff1a; # self.words为常见英文…

Python安装llama库出错“metadata-generation-failed”

Python安装llama库出错“metadata-generation-failed” 1. 安装llama库时出错2. 定位问题1. 去官网下载llama包 2.修改配置文件2.1 解压文件2.2 修改配置文件 3. 本地安装文件 1. 安装llama库时出错 2. 定位问题 根据查到的资料&#xff0c;发现时llama包中的execfile函数已经…

在职研生活学习--20240907

开学第一天 9月7日&#xff0c;中南大学商学院迎来了一支充满活力的队伍——2024级MBA新生集体整装待发&#xff0c;我们满怀期待地登上了前往长沙望城柏乐园的大巴&#xff0c;准备开启一场为期两天一夜的素质拓展与团队建设之旅。 迎新幼儿园PPT 出发 抵达柏乐园&#xff0c;…