24年9月通信基础知识补充1

看文献过程中不断发现有太多不懂的基础知识,故长期更新这类blog不断补充在这过程中学到的知识。由于这些内容与我的研究方向并不一定强相关,故记录不会很深入请见谅。

【通信基础知识补充2】9月通信基础知识补充1

一、Zadoff-Chu 序列

Zadoff-Chu序列(Zadoff-Chu sequence)是一种复指数序列,由于该序列具备恒定包络、理想自相关和互相关特性,它在现代无线通信系统中被广泛采用,特别是在同步、信道估计和随机接入等场景中。其优异的抗干扰能力和对多用户信号的有效区分能力,使其成为提高系统性能的关键技术之一。

1.1 Zadoff-Chu 序列的定义

Zadoff-Chu序列是一种复数序列,通常可以表示为以下形式:
x ( n ) = exp ⁡ ( − j π r n ( n + 1 ) N ) , n = 0 , 1 , 2 , . . . , N − 1 x(n) = \exp \left( -j \frac{\pi r n(n+1)}{N} \right), \quad n = 0, 1, 2, ..., N-1 x(n)=exp(jNπrn(n+1)),n=0,1,2,...,N1
其中:

  • x ( n ) x(n) x(n) 是Zadoff-Chu序列的第 n n n 个元素。
  • j j j 是虚数单位,即 j = − 1 j = \sqrt{-1} j=1
  • r r r 是序列的根序数(root index),可以是任意与 N N N 互质的整数(即 gcd ⁡ ( r , N ) = 1 \gcd(r, N) = 1 gcd(r,N)=1)。
  • N N N 是序列的长度。

1.1.1 如何理解根序数 r r r(root index)

根序数 r r r 是用于控制Zadoff-Chu序列调制的整数参数。每一个不同的 r r r 值都会产生不同的Zadoff-Chu序列,根序数影响了序列的相位变化模式。这种特性保证了多用户系统中的序列正交性,即不同用户的序列互相关为零或接近零。

1.1.1.1 为什么 r r r N N N 需要互质?

只有当 r r r N N N 互质(即最大公约数为1)时,Zadoff-Chu序列才能保证其良好的自相关和互相关特性。如果 r r r N N N 不是互质的,序列可能会出现周期性重复,导致相关特性变差,影响通信中的性能。

1.1.1.2 举例说明

在这里插入图片描述
在这里插入图片描述

1.2 Zadoff-Chu 序列的特性

  1. 恒定包络
    Zadoff-Chu序列的每一个元素的幅度都相同,通常为1。也就是说,对于所有 ( n ) 都满足 ( |x(n)| = 1 )。这种恒定包络的特性在无线通信中非常重要,因为它有助于降低信号的峰均功率比(PAPR)。
  2. 理想自相关
    Zadoff-Chu序列具有理想的自相关特性,即当序列与其自身进行循环移位的相关时,除非移位为零,相关结果总是为零:
    R x x ( τ ) = ∑ n = 0 N − 1 x ( n ) x ∗ ( n − τ ) = δ ( τ ) R_{xx}(\tau) = \sum_{n=0}^{N-1} x(n) x^*(n-\tau) = \delta(\tau) Rxx(τ)=n=0N1x(n)x(nτ)=δ(τ)
    这意味着Zadoff-Chu序列对时延具有良好的抗干扰能力,非常适合用于同步和检测任务。
  3. 理想互相关
    不同根序数 (r) 生成的Zadoff-Chu序列在循环移位时具有理想的互相关特性,即两个不同的Zadoff-Chu序列的互相关为零或接近零。该特性使其能够在多用户环境中有效地区分不同的用户信号。

1.3 Zadoff-Chu 序列的应用

  1. 随机接入
    在LTE和5G中,Zadoff-Chu序列被用作随机接入前导序列(preamble),帮助用户设备(UE)与基站(eNodeB或gNodeB)同步并进行连接。
  2. 信道估计
    由于Zadoff-Chu序列的理想相关特性,它们也被用于信道估计过程,有助于提高估计的精度。
  3. 信号同步
    Zadoff-Chu序列的自相关特性使其在接收端易于检测,常被用于时间和频率同步。

二、如何计算Cramér-Rao下界 (CRLB)

Cramér-Rao下界(CRLB,Cramér-Rao Lower Bound)在参数估计问题中定义了任何无偏估计器方差的理论下界,这个下限是由观测数据和噪声的统计特性决定的,CRLB在估计问题中提供了一个“最佳性能”的衡量标准。接下来将通过一个简单的信道估计例子,展示如何计算CRLB。

2.1 示例:估计无线信道增益 h h h 的CRLB

假设一个简单的无线通信信道模型如下:
y = h ⋅ x + n y = h \cdot x + n y=hx+n
其中:

  • y y y 是接收到的信号,
  • h h h 是我们要估计的未知信道增益,
  • x x x 是已知的发射信号,
  • n n n 是加性白高斯噪声(AWGN),且 n ∼ N ( 0 , σ 2 ) n \sim \mathcal{N}(0, \sigma^2) nN(0,σ2)

2.1.1 步骤1:定义似然函数

首先,我们需要写出观测数据的似然函数 p ( y ∣ h ) p(y|h) p(yh)。假设噪声 n n n 是零均值的高斯白噪声,且具有方差 σ 2 \sigma^2 σ2,那么对于给定的参数 h h h,接收信号 y y y 的概率密度函数是一个高斯分布:
p ( y ∣ h ) = 1 2 π σ 2 exp ⁡ ( − ( y − h ⋅ x ) 2 2 σ 2 ) p(y|h) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left( -\frac{(y - h \cdot x)^2}{2\sigma^2} \right) p(yh)=2πσ2 1exp(2σ2(yhx)2)

2.1.2 步骤2:计算对数似然函数

为了计算Fisher信息,我们首先需要求解对数似然函数 ℓ ( h ) \ell(h) (h)

ℓ ( h ) = log ⁡ p ( y ∣ h ) = − 1 2 log ⁡ ( 2 π σ 2 ) − ( y − h ⋅ x ) 2 2 σ 2 \ell(h) = \log p(y|h) = -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(y - h \cdot x)^2}{2\sigma^2} (h)=logp(yh)=21log(2πσ2)2σ2(yhx)2

2.1.3 步骤3:计算对参数 h h h 的一阶导数

接下来,我们对 h h h 求对数似然函数的导数(称为得分函数):
∂ ℓ ( h ) ∂ h = x ⋅ ( y − h ⋅ x ) σ 2 \frac{\partial \ell(h)}{\partial h} = \frac{x \cdot (y - h \cdot x)}{\sigma^2} h(h)=σ2x(yhx)

2.1.4 步骤4:计算Fisher信息

Fisher信息 I ( h ) I(h) I(h) 是对数似然函数的一阶导数平方的期望值,定义为:
I ( h ) = E [ ( ∂ ℓ ( h ) ∂ h ) 2 ] I(h) = \mathbb{E} \left[ \left( \frac{\partial \ell(h)}{\partial h} \right)^2 \right] I(h)=E[(h(h))2]
首先,将一阶导数平方:
( ∂ ℓ ( h ) ∂ h ) 2 = x 2 ⋅ ( y − h ⋅ x ) 2 σ 4 \left( \frac{\partial \ell(h)}{\partial h} \right)^2 = \frac{x^2 \cdot (y - h \cdot x)^2}{\sigma^4} (h(h))2=σ4x2(yhx)2
由于噪声 n n n 服从 N ( 0 , σ 2 ) \mathcal{N}(0, \sigma^2) N(0,σ2),我们有 E [ ( y − h ⋅ x ) 2 ] = σ 2 \mathbb{E}[(y - h \cdot x)^2] = \sigma^2 E[(yhx)2]=σ2。因此,Fisher信息为:
I ( h ) = x 2 σ 2 I(h) = \frac{x^2}{\sigma^2} I(h)=σ2x2

2.1.5 步骤5:计算CRLB

CRLB是Fisher信息的倒数,对于参数 h h h 的估计,CRLB为:

CRLB ( h ) = 1 I ( h ) = σ 2 x 2 \text{CRLB}(h) = \frac{1}{I(h)} = \frac{\sigma^2}{x^2} CRLB(h)=I(h)1=x2σ2

2.1.6 总结

在这个简单的例子中,信道增益 h h h 的CRLB是 σ 2 x 2 \frac{\sigma^2}{x^2} x2σ2,这意味着任何无偏估计算法的方差不能低于这个值。通过以下步骤,我们计算了CRLB:

  1. 写出似然函数或概率密度函数 p ( y ∣ h ) p(y|h) p(yh)
  2. 计算对数似然函数 ℓ ( h ) \ell(h) (h)
  3. 求出对未知参数 h h h 的导数。
  4. 计算Fisher信息矩阵。
  5. 通过Fisher信息矩阵的倒数得到CRLB。

CRLB在信道估计中的作用非常重要,它为各种算法的估计性能提供了一个理论下界,帮助我们衡量算法的优劣。

三、介绍哈达玛矩阵

3.1. 什么是哈达玛矩阵?

哈达玛矩阵(Hadamard Matrix)是一种特殊的正交矩阵,矩阵的元素只有 +1 和 -1。它具有优良的正交性和自相关特性,因此广泛应用于信号处理、通信系统、量子计算等领域。

3.1.1 定义

哈达玛矩阵 H n H_n Hn 是一个 n × n n \times n n×n 的矩阵,并满足以下条件:

  1. 元素取值:矩阵的每个元素要么是 +1,要么是 -1。
  2. 正交性:矩阵的行(或列)是两两正交的,也就是说,任意两行或两列的内积为零。数学上:
    H n ⋅ H n T = n I n H_n \cdot H_n^T = nI_n HnHnT=nIn
    其中 H n T H_n^T HnT H n H_n Hn 的转置矩阵, I n I_n In n × n n \times n n×n 的单位矩阵。

3.1.2 存在性条件

哈达玛矩阵的阶数 n n n 必须是 1 或 4 的倍数。虽然并不是所有的 4 的倍数阶数都有哈达玛矩阵,但确实存在许多特殊阶数的哈达玛矩阵。

3.2. 哈达玛矩阵的构造方法

3.2.1 Sylvester 构造法

Sylvester 构造法是构造哈达玛矩阵的常用方法。其递归公式如下:

  1. n = 1 n = 1 n=1 时:
    H 1 = [ 1 ] H_1 = \begin{bmatrix} 1 \end{bmatrix} H1=[1]
  2. n = 2 k n = 2^k n=2k 时, H 2 n H_{2n} H2n 可以通过以下递归公式得到:
    H 2 n = [ H n H n H n − H n ] H_{2n} = \begin{bmatrix} H_n & H_n \\ H_n & -H_n \end{bmatrix} H2n=[HnHnHnHn]
3.2.2 举例:
  • 对于 n = 2 n = 2 n=2,我们有:
    H 2 = [ 1 1 1 − 1 ] H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} H2=[1111]
  • 对于 n = 4 n = 4 n=4,根据递归公式构造得到:
    H 4 = [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] H_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} H4= 1111111111111111

3.3. 哈达玛矩阵的性质

哈达玛矩阵具有以下重要性质:

  1. 正交性
    哈达玛矩阵的行和列之间两两正交,因此可以用作正交编码或扩频码,减少信号之间的干扰。

  2. 最大行列式
    对于给定阶数的矩阵,哈达玛矩阵的行列式的绝对值是所有矩阵中最大的。

  3. 符号对称性
    哈达玛矩阵的所有元素都是 +1 或 -1,具有很强的符号对称性,易于实现和应用。

3.4. 哈达玛矩阵的应用

3.4.1 在通信系统中的应用

在CDMA(码分多址)系统中,哈达玛矩阵的行常用作正交码,用于区分多个用户的信号。这种正交性确保了同时发送的信号互不干扰。

3.4.2 在量子计算中的应用

哈达玛门(Hadamard Gate)是量子计算中非常重要的量子门,它能够将量子比特从经典状态转换为叠加态。哈达玛矩阵是量子态叠加与干涉的重要工具。

3.4.3 在图像处理中的应用

哈达玛变换是图像处理中的一种离散变换,它类似于离散傅里叶变换(DFT),在图像压缩和处理中的快速编码算法中得到了广泛应用。

3.5. 哈达玛矩阵的例子

3.5.1 4阶哈达玛矩阵

H 4 = [ 1 1 1 1 1 − 1 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 ] H_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} H4= 1111111111111111

3.5.2 8阶哈达玛矩阵

H 8 = [ 1 1 1 1 1 1 1 1 1 − 1 1 − 1 1 − 1 1 − 1 1 1 − 1 − 1 1 1 − 1 − 1 1 − 1 − 1 1 1 − 1 − 1 1 1 1 1 1 − 1 − 1 − 1 − 1 1 − 1 1 − 1 − 1 1 − 1 1 1 1 − 1 − 1 − 1 − 1 1 1 1 − 1 − 1 1 − 1 1 1 − 1 ] H_8 = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \end{bmatrix} H8= 1111111111111111111111111111111111111111111111111111111111111111

3.6. 生成代码并验证其正交和互相关特性(matlab)

% 指定生成哈达玛矩阵的阶数
n = 4;  % 可修改为其他2的幂,如8, 16等

% 验证 n 是否为 1 或 2 的幂
if mod(log2(n), 1) ~= 0
    error('n 必须是 1 或 2 的幂,且至少为 1。');
end

% 递归构造哈达玛矩阵
H = 1;  % 初始哈达玛矩阵 H_1

while size(H, 1) < n
    H = [H, H; H, -H];  % 递归扩展
end
% 输出生成的哈达玛矩阵
disp('生成的哈达玛矩阵:');
disp(H);
% 验证正交性
disp('验证正交性:');
% H * H' 应该等于 n * I_n
orthogonality_test = H * H';
disp(orthogonality_test);
% 检查正交性是否满足 n * I_n
if isequal(orthogonality_test, n * eye(n))
    disp('正交性验证通过');
else
    disp('正交性验证失败');
end
% 验证互相关性
disp('验证互相关性:');
% 两个不同的行向量或列向量的点积应为零
cross_correlation_matrix = H' * H / n;
disp('互相关矩阵:');
disp(cross_correlation_matrix);

% 检查是否是单位矩阵,意味着只有对角线元素为1,其余为0
if all(all(abs(cross_correlation_matrix - eye(n)) < 1e-10))
    disp('互相关性验证通过');
else
    disp('互相关性验证失败');
end

总结
哈达玛矩阵由于其良好的正交性、低复杂度以及符号对称性,广泛应用于信号处理、通信系统以及量子计算等领域。通过递归构造法,我们能够方便地构造出不同阶数的哈达玛矩阵,并将其应用于实际系统中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/873772.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

3GPP协议入门——物理层基础(一)

1. 频段/带宽 NR指定了两个频率范围&#xff0c;FR1&#xff1a;通常称Sub 6GHz&#xff0c;也称低频5G&#xff1b;FR2&#xff1a;通常称毫米波&#xff08;Millimeter Wave&#xff09;&#xff0c;也称高频5G。 2. 子载波间隔 NR中有15kHz&#xff0c;30kHz&#xff0c;6…

C++——入门基础(下)

目录 一、引用 &#xff08;1&#xff09;引用的概念和定义 &#xff08;2&#xff09;引用的特性 &#xff08;3&#xff09;引用的使用 &#xff08;4&#xff09;const引用 &#xff08;5&#xff09;指针和引用的关系 二、inline 三、nullptr 四、写在最后 一、引用…

带相对位置表示的自注意力(201803)

Self-Attention with Relative Position Representations 带相对位置表示的自注意力 https://arxiv.org/pdf/1803.02155v1 Abstract Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results …

【加密社】比特币海量数据问题解决方案

加密社 比特币是无敌的存在&#xff0c;刚翻了一遍中本聪的论文&#xff08;其实以前看过一次&#xff0c;那时不明觉厉&#xff09;&#xff0c;发现咱们一直在考虑的问题&#xff0c;基本都能在其论文上找到解决方案了。。 现在出现的这些问题&#xff0c;完全是因为bitcoin…

4千6历年高考英语试题大全ACCESS\EXCEL数据库

《历年高#考英语试题大全ACCESS数据库》搜集了大量的全#国各#地高#考英语模拟试题&#xff0c;每道题目均有相应的答案和解析&#xff1b;这种数据虽然没有《一站到底》类的数据结构&#xff08;一个选项一个字段&#xff09;那么好&#xff0c;但是通过技术人员还是可以很简单…

自适应中值滤波器:图像去噪的高效解决方案

在数字图像处理中&#xff0c;椒盐噪声是常见的干扰之一&#xff0c;它会导致图像出现随机的黑点和白点&#xff0c;严重影响图像质量。传统的中值滤波器虽然在一定程度上能够去除这种噪声&#xff0c;但可能无法完全恢复图像的细节。为此&#xff0c;本文将介绍一种自适应中值…

k8s上搭建devops环境

一、gitlab 1.安装gitlab # 下载安装包 wget https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/gitlab-ce-15.9.1-ce.0.el7.x86_64.rpm # 安装 rpm -i gitlab-ce-15.9.1-ce.0.el7.x86_64.rpm # 编辑 vi /etc/gitlab/gitlab.rb 文件 # 修改 external_url 访问路径 htt…

【网络安全】分析JS文件实现账户接管

未经许可,不得转载。 文章目录 正文正文 网站使用的是简单的OTP(一次性密码)验证机制,通过用户注册时提供的电子邮件发送邮箱验证码。在功能有限的情况下,我选择去分析网站加载的JavaScript文件。 我发现了一个名为 saveJobseekerPasswordInCache 的函数: 这个函数虽然…

vscode侧边工具栏不见了找回方法

有时候因为误操作&#xff0c;vscode编辑器里面的侧边工具栏不见了找回方法&#xff0c;请按照以下步骤操作。 例:1&#xff1a;这个工具栏不见了 方法&#xff1a;菜单栏点击文件》点击首选项》点击设置》点击工作台》点击外观》勾选如下图选项 例如2&#xff1a;蓝控制台底…

无人机之穿越机的飞行模式

穿越机的飞行模式主要分为两种基本类型&#xff1a;自稳模式&#xff08;ANGLE MODE&#xff09;和手动模式&#xff08;ACRO MODE&#xff09;&#xff0c;以及一些衍生的飞行模式&#xff0c;如半自稳模式&#xff08;Horizon Mode&#xff09;等。下面将详细介绍这两种基本模…

vulhub think PHP 2-rce远程命令执行漏洞

1.开启环境 2。访问对应网站端口 3.这里我们直接构造payload&#xff0c;访问phpinfo() http://192.168.159.149:8080/?s/Index/index/L/${phpinfo()} 4.可以访问到我们的phpinfo&#xff0c; 所以写入一句话木马&#xff0c;也可使用蚁剑进行连接&#xff0c;获得其shell进…

云计算之大数据(下)

目录 一、Hologres 1.1 产品定义 1.2 产品架构 1.3 Hologres基本概念 1.4 最佳实践 - Hologres分区表 1.5 最佳实践 - 分区字段设置 1.6 最佳实践 - 设置字段类型 1.7 最佳实践 - 存储属性设置 1.8 最佳实践 - 分布键设置 1.9 最佳实践 - 聚簇键设置 1.10 最佳实践 -…

AT3340-6T杭州中科微BDS定位授时板卡性能指标

AT3340-6T是一款高性能多系统卫星定位安全授时板卡&#xff0c;可通过配置支持各个单系统的定位授时。 外观尺寸&#xff1a; 电气参数 应用领域&#xff1a; 通信基站授时 电力授时 广播电视授时 轨道系统授时 金融系统授时 其他授时应用 注意事项&#xff1a; 为了充分发挥…

Linux入门攻坚——31、rpc概念及nfs和samba

NFS&#xff1a;Network File System 传统意义上&#xff0c;文件系统在内核中实现 RPC&#xff1a;函数调用&#xff08;远程主机上的函数&#xff09;&#xff0c;Remote Procedure Call protocol 一部分功能由本地程序完成 另一部分功能由远程主机上的 NFS本质…

软件部署-Docker容器化技术

开始前的环境说明 VMware 17 Pro Centos release 7.9.2009(防火墙已关闭) Docker 26.1.4 Docker镜像加速器配置:"https://do.nark.eu.org", "https://dc.j8.work", "https://docker.m.daocloud.io", "https://dockerproxy.com", &…

2. c#从不同cs的文件调用函数

1.文件目录如下&#xff1a; 2. Program.cs文件的主函数如下 using System; using System.Collections.Generic; using System.Linq; using System.Threading.Tasks; using System.Windows.Forms;namespace datasAnalysis {internal static class Program{/// <summary>…

HUAWEI华为MateBook B5-420 i5 集显(KLCZ-WXX9,KLCZ-WDH9)原装出厂Windows10系统文件下载

适用型号&#xff1a;KLCZ-WXX9、KLCZ-WDH9 链接&#xff1a;https://pan.baidu.com/s/12xnaLtcPjZoyfCcJUHynVQ?pwdelul 提取码&#xff1a;elul 华为原装系统自带所有驱动、出厂主题壁纸、系统属性联机支持标志、系统属性专属LOGO标志、华为浏览器、Office办公软件、华为…

网络传输的基本流程

目录 0.前言 1.TCP/IP四层协议模型的认识 2.数据传输的大致流程 3.局域网通信的原理 4.同一网段下两台主机之间的通信 5.不同网段下两台主机之间的通信 0.前言 不知道你有没有这样的疑问&#xff0c;为什么不同的设备之间能够进行数据的发送和接收&#xff1f;不同的通信…

计算机毕业设计选题推荐-农家乐综合服务系统-乡村游乐购系统-田园休闲生活系统-Java/Python项目实战

✨作者主页&#xff1a;IT毕设梦工厂✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Py…

基于微信小程序+Java+SpringBoot+Vue+MySQL的网上花店/鲜花销售小程序

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 基于微信小程序JavaSpringBootVueMySQL的网上花店/鲜花销售…