均值滤波算法及实现

均值滤波器的使用场景:

均值滤波器使用于处理一些如上述蓝色线的高斯噪声场景

红色曲线是经过均值滤波处理后的数据。主要因为均值滤波设置数据缓冲区(也即延时周期),使得测量值经过缓冲不会出现特别大的变化。

黄色曲线为高斯噪声,红色曲线为经过均值滤波处理后的数据。

如果想要更好的滤波效果:

  • 增加滤波和,也即往后多取几帧数据进行累加求和,再处以累加次数;
  • 嵌套使用均值滤波,也即用上一均值滤波输出作为本次滤波输入;

均值滤波不适合处理类似橙色曲线的脉冲噪声的数据

蓝色曲线为经过均值滤波处理后的数据,虽然整体幅值降低了,但是如61-69区间,实际测量只在61附近出现一次突变,但很快下降正常,但经过均值滤波处理,虽然幅值被降低,但其实也没有达到理想,反而将突变脉冲以一个恒定的值持续了9s(累加次数,也即缓冲周期)。

目标脉冲值是0,未经过均值滤波处理在61s出现一较大突变,由于系统本身的阻尼等作用,系统实际不会产生太大的振荡,可能由于来的比较快,系统会微微抖一下就稳定。但如果使用均值滤波处理后,在61s处的尖峰脉冲硬是被拉长了9帧才退出,系统稳定性必定太差。因此脉冲信号噪声不适合用均值滤波,可以考虑使用低通滤波!


均值滤波作用

均值滤波是一种常见的图像处理技术,用于平滑图像中的噪声或细节。它的主要用途包括:

  1. 去除噪声:图像中的噪声是由于图像采集过程中的各种因素引入的不希望的干扰。均值滤波可以通过计算像素周围邻域内像素的平均值来平滑图像,并减少噪声的影响。

  2. 平滑图像:在某些情况下,图像中的细节过多或变化过于剧烈,可能会导致视觉上的不连续或不平滑感觉。均值滤波可以通过平均周围像素的值来减少这些细节,使图像更加平滑。

  3. 降低图像分辨率:在一些应用中,需要降低图像的分辨率以减少计算或存储的需求。均值滤波可以通过对图像进行平滑来实现降低分辨率的效果。

  4. 图像预处理:在某些图像处理任务中,如图像分割或边缘检测,均值滤波可以作为预处理步骤,帮助提取更准确的特征或边缘。

需要注意的是,均值滤波是一种简单且常用的滤波方法,但它可能会导致图像细节的模糊或平滑化。对于某些应用场景,可能需要考虑其他更高级的滤波技术,以在平滑图像的同时保留更多的细节信息。


均值滤波实现:

#include <stdio.h>
#include <stdlib.h>
 
double* weightedMeanFilter(double* input, int length, int windowSize, double* weights) {
    double* output = (double*)malloc(length * sizeof(double)); // 创建新数组
    int halfWindowSize = windowSize / 2;
    
    for (int i = 0; i < length; i++) {
        double weightedSum = 0.0;
        double weightSum = 0.0;
        
        for (int j = i - halfWindowSize; j <= i + halfWindowSize; j++) {
            if (j >= 0 && j < length) {
                weightedSum += input[j] * weights[j - (i - halfWindowSize)];
                weightSum += weights[j - (i - halfWindowSize)];
            }
        }
        
        output[i] = weightedSum / weightSum; // 计算加权平均值
    }
    
    return output;
}
 
int main() {
    double input[] = {1.2, 2.3, 3.4, 4.5, 5.6};
    int length = sizeof(input) / sizeof(input[0]);
    int windowSize = 3;
    
    double weights[] = {0.1, 0.6, 0.3}; // 示例权重系数数组
    
    double* output = weightedMeanFilter(input, length, windowSize, weights);
    
    printf("Input: ");
    for (int i = 0; i < length; i++) {
        printf("%.2f ", input[i]);
    }
    
    printf("\nOutput: ");
    for (int i = 0; i < length; i++) {
        printf("%.2f ", output[i]);
    }
    
    free(output); // 释放动态分配的内存
    
    return 0;
}
/*
Input: 1.20 2.30 3.40 4.50 5.60 
Output: 1.57 2.52 3.62 4.72 5.44
*/

增加权重系数可以使均值滤波更加灵活,以更好地适应不同的应用场景和需求。具体来说,增加权重系数的意义包括:

  1. 强调重要区域:通过调整权重系数,可以使某些像素在计算均值时具有更大的贡献。这样可以使均值滤波更加关注重要的区域,从而保留或突出这些区域的细节。例如,在人脸识别中,可以增加权重系数以突出人脸区域,以便更好地提取人脸特征。

  2. 抑制噪声或异常值:某些像素可能受到噪声或异常值的干扰,导致它们的值与周围像素明显不同。通过降低这些像素的权重系数,可以减少它们对均值的影响,从而抑制噪声或异常值的影响。

  3. 考虑空间相关性:在一些情况下,像素之间的空间关系对滤波结果的影响很大。通过调整权重系数以考虑像素之间的空间相关性,可以更好地保留图像的结构信息。例如,可以使用高斯加权系数来加权计算均值,以便更好地平滑图像并保留边缘。

  4. 自适应滤波:通过根据像素的特征或属性来动态调整权重系数,可以实现自适应滤波。这意味着不同的像素可以具有不同的权重,从而使滤波更加适应图像的局部特征。例如,可以根据像素的梯度值或纹理信息来调整权重系数,以实现更好的平滑效果。

总之,增加权重系数可以提供更多的灵活性和控制力,使均值滤波能够更好地适应不同的图像处理需求,并在平滑图像的同时保留重要的细节。

#include <stdio.h>
#include <stdlib.h>
 
double* weightedMeanFilter(double* input, int length, int windowSize, double* weights) {
    double* output = (double*)malloc(length * sizeof(double)); // 创建新数组
    int halfWindowSize = windowSize / 2;
    
    for (int i = 0; i < length; i++) {
        double weightedSum = 0.0;
        double weightSum = 0.0;
        
        for (int j = i - halfWindowSize; j <= i + halfWindowSize; j++) {
            if (j >= 0 && j < length) {
                weightedSum += input[j] * weights[j - (i - halfWindowSize)];
                weightSum += weights[j - (i - halfWindowSize)];
            }
        }
        
        output[i] = weightedSum / weightSum; // 计算加权平均值
    }
    
    return output;
}
 
int main() {
    double input[] = {1.2, 2.3, 3.4, 4.5, 5.6};
    int length = sizeof(input) / sizeof(input[0]);
    int windowSize = 3;
    
    double weights[] = {0.1, 0.6, 0.3}; // 示例权重系数数组
    
    double* output = weightedMeanFilter(input, length, windowSize, weights);
    
    printf("Input: ");
    for (int i = 0; i < length; i++) {
        printf("%.2f ", input[i]);
    }
    
    printf("\nOutput: ");
    for (int i = 0; i < length; i++) {
        printf("%.2f ", output[i]);
    }
    
    free(output); // 释放动态分配的内存
    
    return 0;
}
/*
Input: 1.20 2.30 3.40 4.50 5.60 
Output: 1.57 2.52 3.62 4.72 5.44
*/


结果对比:


参考:

1、简单的均值滤波讲解(附代码)_哔哩哔哩_bilibili

2、https://www.cnblogs.com/faithlocus/p/17532226.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/843089.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

新版GPT-4omini上线!快!真TM快!

大半夜&#xff0c;OpenAI突然推出了GPT-4o mini版本。 当我看到这条消息时&#xff0c;正准备去睡觉。mini版本质上是GPT-4o模型的精简版本&#xff0c;没有什么革命性的创新&#xff0c;因此我并没有太在意。 结果今天早上一觉醒来发现伴随GPT-4o mini上线&#xff0c;官网和…

linux进程优先级——优先值、调度算法、进程性质

前言&#xff1a;本篇内容主要讲解linux下进程的优先级。 优先级的内容相对较少&#xff0c; 最重要的内容就是cpu的调度方法。 内容相对容易理解。 ps&#xff1a;本节内容适合了解冯诺依曼和操作系统的管理方式以及进程PCB的友友们进程观看 进程的优先级是什么 进程的优先级…

Android11 framework 禁止三方应用开机自启动

Android11应用自启动限制 大纲 Android11应用自启动限制分析验证猜想&#xff1a;Android11 AOSP是否自带禁止三方应用监听BOOT_COMPLETED​方案禁止执行非系统应用监听到BOOT_COMPLETED​后的代码逻辑在执行启动时判断其启动的广播接收器一棍子打死方案&#xff08;慎用&#…

【Spark官方文档部分翻译】RDD编程指南(RDD Programming Guide)

写在前面 内容如何选择 本翻译只翻译本人认为精华的部分&#xff0c;本人认为的Spark的一些核心理念&#xff0c;编程思想。一些特别基础的操作包括但不限于搭建环境就不在此赘述了。 配套版本 本系列基于Spark 3.3.1&#xff0c;Scala 2.12.10&#xff0c;进行翻译总结 原…

专业PDF编辑工具:Acrobat Pro DC 2024.002.20933绿色版,提升你的工作效率!

软件介绍 Adobe Acrobat Pro DC 2024绿色便携版是一款功能强大的PDF编辑和转换软件&#xff0c;由Adobe公司推出。它是Acrobat XI系列的后续产品&#xff0c;提供了全新的用户界面和增强功能。用户可以借助这款软件将纸质文件转换为可编辑的电子文件&#xff0c;便于传输、签署…

stm32:CAN通讯

目录 介绍 物理层​编辑 差分信号 总线网络 协议层 CAN的 帧/报文 种类 数据帧 远程帧&#xff08;遥控帧&#xff09; 错误帧 过载帧 帧间隔 总线仲裁 位同步 数据同步 波特率 stm32的CAN外设 工作模式 测试模式 功能框图 时序 标准时序 例子 环回静默…

应用层——HTTP

像我们电脑和手机使用的应用软件就是在应用层写的&#xff0c;当我们的数据需要传输的时候换将数据传递到传输层。 应用层专门给用户提供应用功能&#xff0c;比如HTTP,FTP… 我们程序员写的一个个解决我们实际的问题都在应用层&#xff0c;我们今天来聊一聊HTTP。 协议 协议…

游泳耳机哪个牌子最好?公认最好的四大游泳耳机测评分享

游泳耳机&#xff0c;作为水上运动爱好者的贴心伴侣&#xff0c;已被公认为提升水下体验的利器。然而&#xff0c;在抖音、贴吧等社交平台上&#xff0c;我们也不难发现一些关于游泳耳机性能不佳、使用效果差&#xff0c;甚至对耳朵造成不适的反馈。这种矛盾现象的出现&#xf…

HTML5大作业三农有机,农产品,农庄,农旅网站源码

文章目录 1.设计来源1.1 轮播图页面头部效果1.2 栏目列表页面效果1.3 页面底部导航效果 2.效果和源码2.1 源代码 源码下载万套模板&#xff0c;程序开发&#xff0c;在线开发&#xff0c;在线沟通 作者&#xff1a;xcLeigh 文章地址&#xff1a;https://blog.csdn.net/weixin_4…

基于pytorch演练线性回归模型

引言 本文的目的是在前文基于numpy演练可视化梯度下降的代码基础上&#xff0c;使用pytorch来实现一个功能齐全的线性回归训练模型。 为什么仍然使用线性回归模型&#xff1f; 线性回归模型简单&#xff0c;它能让我们聚集在pytorch是如何工作的&#xff0c;而不是模型内部的…

使用百度语音技术实现文字转语音

使用百度语音技术实现文字转语音 SpringBootVue前后端分离项目 调用api接口需要使用AK和SK生成AccessToken,生成getAccessToken的接口有跨域限制,所以统一的由后端处理了 部分参数在控制台->语音技术->在线调试里面能找到 Controller RestController RequestMapping(&q…

C++ | Leetcode C++题解之第268题丢失的数字

题目&#xff1a; 题解&#xff1a; class Solution { public:int missingNumber(vector<int>& nums) {int n nums.size();int total n * (n 1) / 2;int arrSum 0;for (int i 0; i < n; i) {arrSum nums[i];}return total - arrSum;} };

探索 Framer Motion 高级动画技巧:提升前端设计水平

在现代的网页和应用设计中&#xff0c;动画不仅仅是视觉的点缀&#xff0c;更是用户体验的重要组成部分。它能够使界面更具吸引力&#xff0c;提升交互的流畅性&#xff0c;甚至在不经意间传达品牌的个性和态度。然而&#xff0c;要创造出令人惊叹的动效并不容易——直到有了 F…

Edge侧边栏copilot消失

Edge侧边栏copilot消失 当前环境 自己ip问题已解决&#xff0c;edge中已登录账号&#xff0c;地区已设置为美国&#xff0c;语言已设置为英文。具体可以通过空白页右上角的setting验证 解决方案 首先&#xff0c;打开“任务管理器”&#xff0c;在其中找到 Microsoft Edge…

【SASS/SCSS(三)】样式的复用与动态计算(@mixin和@function)

目录 一、mixin 1、定义复用的样式代码&#xff0c;接受传参&#xff0c;搭配include使用。 位置传参 关键词传参 ...语法糖接受传入的任意参数 2、在mixin中使用content&#xff0c;获取外部对mixin的追加内容 二、function 三、字符串——值得注意的点 很多时候&#…

[Doris]阿里云搭建Doris,测试环境1FE 1BE

首先&#xff1a;阿里云的国内服务器千万不要用容器搭建&#xff0c;或者自己Dockfile构建镜像。两种方式都不得行&#xff0c;压根拉不到github的镜像&#xff0c;开了镜像加速器也拉不到&#xff0c;不要折腾了&#xff0c;极其愚蠢。 背景&#xff1a;现在测试环境&#xff…

算法力扣刷题记录 五十六【501.二叉搜索树中的众数】

前言 二叉搜索树操作&#xff0c;继续。 记录 五十六【501.二叉搜索树中的众数】 一、题目阅读 给你一个含重复值的二叉搜索树&#xff08;BST&#xff09;的根节点 root &#xff0c;找出并返回 BST 中的所有 众数&#xff08;即&#xff0c;出现频率最高的元素&#xff09;…

【BUG】已解决:zipfile.BadZipFile: File is not a zip file

已解决&#xff1a;zipfile.BadZipFile: File is not a zip file 欢迎来到英杰社区https://bbs.csdn.net/topics/617804998 欢迎来到我的主页&#xff0c;我是博主英杰&#xff0c;211科班出身&#xff0c;就职于医疗科技公司&#xff0c;热衷分享知识&#xff0c;武汉城市开发…

IAR环境下STM32+IAP方案的实现

--基于STM32F103ZET6的UART通讯实现 一、什么是IAP&#xff0c;为什么要IAP IAP即为In Application Programming(在应用中编程)&#xff0c;一般情况下&#xff0c;以STM32F10x系列芯片为主控制器的设备在出厂时就已经使用J-Link仿真器将应用代码烧录了&#xff0c;如果在设备使…

Day16_集合与迭代器

Day16-集合 Day16 集合与迭代器1.1 集合的概念 集合继承图1.2 Collection接口1、添加元素2、删除元素3、查询与获取元素不过当我们实际使用都是使用的他的子类Arraylist&#xff01;&#xff01;&#xff01; 1.3 API演示1、演示添加2、演示删除3、演示查询与获取元素 2 Iterat…