实数信号的傅里叶级数研究(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

实数信号的傅里叶级数是将实数信号分解为一系列正弦和余弦函数的和。通过研究实数信号的傅里叶级数,我们可以揭示信号的频域特性、谐波成分以及信号的周期性等信息。

以下是实数信号的傅里叶级数研究的步骤:

1. 确定信号的周期:实数信号的傅里叶级数要求信号是周期性的,因此第一步是确定信号的周期。如果信号已知周期,则直接使用已知的周期;如果信号的周期未知,可以通过观察信号的重复性或通过分析信号的特征来估计周期。

2. 计算基频和谐波频率:基频是指信号的周期的倒数,而谐波频率是基频的整数倍。通过计算基频和谐波频率,可以确定傅里叶级数中需要考虑的频率分量。

3. 计算信号的系数:使用傅里叶级数的公式,根据信号的周期和所选的频率分量,计算信号在每个频率分量上的系数。系数表示了每个频率分量对于信号的贡献程度。

4. 重构信号:将计算得到的正弦和余弦函数按照其对应的系数加权求和,可以重构出原始信号的近似,即使用傅里叶级数近似表示原始信号。

5. 分析频域特性和谐波成分:通过观察每个频率分量的系数,可以了解信号在频域上的特性。特别是谐波成分在系数中的存在可以揭示信号中的谐波结构和频率分布情况。

6. 评估和调整:根据计算得到的傅里叶级数近似信号和频域分析结果,评估傅里叶级数的逼近效果,并进行必要的调整和优化。

需要注意的是,实数信号的傅里叶级数研究需要信号是周期性的。对于非周期信号,可以考虑使用傅里叶变换进行频域分析。

总之,实数信号的傅里叶级数研究包括确定信号的周期、计算基频和谐波频率、计算信号的系数、重构信号、分析频域特性和谐波成分等步骤。通过这些步骤,我们可以深入了解信号的频域特性和谐波成分,从而更好地理解和处理实数信号。

📚2 运行结果

 

部分代码:

function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% function [ freq,amp,phase,dc ] = fourier_series_real( t,x )
% Fourier series of real signals.
% Written by Yoash Levron, January 2013.
%
% This function computes the fourier series of a signal x(t).
% the amplitudes of the fourier series have the same dimension
% of the original signal, so this function is useful for immediate
% computation of the actual frequency components, without
% further processing.
%
% for example, x(t) = 2 + 3*cos(2*pi*50*t) will result in 
% dc value = 2
% frequencies = [50   100  150   200 ...]
% amplitudes   = [3     0      0        0     ...]
% phases         = [0     0      0        0     ...]
%
% x(t) is one cycle of an infinite cyclic signal. The function
% computes the fourier transform of that infinite signal.
% the period of the signal (T) is determined by the length
% of the input time vector, t.
% x(t) must be real (no imaginary values).
%
% The signal x(t) is represented as:
% x(t) = Adc + A1*cos(w*t + ph1) + A2*cos(2*w*t + ph2) + ...
% the function computes the amplitudes, Adc,A1,A2...
% and the phases ph1,ph2,...
%
% T = period of the signal = t(end) - t(1)
% w = basic frequency = 2*pi/T
%
% The function automatically interpolates the original signal
% to avoid aliasing. Likewise, the function automatically determines
% the number of fourier components, and truncates trailing zeros.
%
% inputs:
% t - [sec] time vector. Sample time may vary within the signal.
% x - signal vector. same length as t.
%
% outputs:
% freq - [Hz] frequencies of the fourier series, not including zero.
% amp - amplitudes vector. amp=[A1 A2 A3 ...], not including the DC component.
% phase - [rad/sec] . phases, not including the DC component.
% dc - the DC value (average of the signal).


%%%%%%%%%%% computation %%%%%%%%
rel_tol = 1e-4;  % relative tolerance, to determine trailing zero truncation

if (~isreal(x))
        clc;
        beep;
        disp('fourier_series_real Error:  x(t) must be real.');
        dc = NaN;  amp = NaN;  freq = NaN;  phase = NaN;
        return;
end

t = t-t(1);  % shifting time to zero.
T = t(end);  % period time.
N = 100;  % number of samples
if (mod(N,2) == 1)
    N = N + 1;
end
N = N/2;

ok = 0;
while (~ok)
    N = N*2;  % increase number of samples
    
    if (N > 10e6)
        clc;
        beep;
        disp('fourier_series_real Error: signal bandwidth seems too high.');
        disp('Try decreasing the sample time in the input time vector t,');
        disp('or increasing the relative tolerance rel_tol');
        dc = NaN;  amp = NaN;  freq = NaN;  phase = NaN;
        return;
    end
    dt = T/N;
    t1 = 0:dt:(T-dt);
    x1 = interp1(t,x,t1,'cubic',0);
    xk = (1/N)*fft(x1);
    
    dc = abs(xk(1));
    xkpos = xk(2:(N/2));
    xkneg = xk(end:-1:(N/2+2));
    
    freq = [1:length(xkpos)]/T;  % Hz
    amp = 2*abs(xkpos);
    phase = angle(xkpos);  % rad/sec
    
    %%% check if enough samples are used.
    %%% if not, try again, with more samples.
    Am = max(amp);
    ii = find((amp(end-10:end)/Am)>rel_tol);
    ok = isempty(ii);
end

% %%% truncate output vectors to remove trailing zeros
Am = max(amp);
ii = length(amp);
while (amp(ii) < Am*rel_tol)
    ii = ii - 1;
end
amp = amp(1:ii);
freq = freq(1:ii);
phase = phase(1:ii);

end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]赵乐源,刘传辉,刘锡国等.基于傅里叶级数的椭圆球面波信号时频分析[J].现代电子技术,2022,45(17):35-40.DOI:10.16652/j.issn.1004-373x.2022.17.007.

[2]苗永平,代坤,陈达等.傅里叶级数实验的优化设计与实践[J].实验室科学,2021,24(06):1-4+9.

🌈4 Matlab代码实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/82890.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

(2)、将SpringCache扩展功能封装为starter

(2)、将SpringCache扩展功能封装为starter 1、准备工作 前面我们写了一个common-cache模块,尽可能的将自定义的RedisConnectionFactory, RedisTemplate, RedisCacheManager等Bean封装了起来。 就是为了方便我们将其封装为一个Starter。 我们这里直接《SpringCache+Redis实…

微信个人号开发,实现机器人辅助社群操作

微信 iPad 协议是指用于在 iPad 设备上使用微信应用的技术协议。一般来说&#xff0c;通过该协议可以将微信账号同步到 iPad 设备上&#xff0c;并且可以在 iPad 上发送和接收微信消息&#xff0c;查看好友列表、聊天记录等功能。微信 iPad 协议是通过私有API实现的。 需要一定…

嵌入式:ARM Day6

作业:完成cortex-A7核UART总线实验 目的&#xff1a;1.输入a,显示b&#xff0c;将输入的字符的ASCII码下一位字符输出 2.原样输出输入的字符串 源码&#xff1a; uart4.h #ifndef __UART4_H__ #define __UART4_H__#include "stm32mp1xx_rcc.h" #incl…

九、Linux下,如何在命令行进入文本编辑页面?

1、文本编辑基础 说到文本编辑页面&#xff0c;那就必须提到vi和vim&#xff0c;两者都是Linux系统中&#xff0c;常用的文本编辑器 2、三种工作模式 3、使用方法 &#xff08;1&#xff09;在进入Linux系统&#xff0c;在输入vim text.txt之后&#xff0c;会进入文本编辑中&…

Python多组数据三维绘图系统

文章目录 增添和删除坐标数据更改绘图逻辑源代码 Python绘图系统&#xff1a; 基础&#xff1a;将matplotlib嵌入到tkinter &#x1f4c8;简单的绘图系统 &#x1f4c8;数据导入&#x1f4c8;三维绘图系统自定义控件&#xff1a;坐标设置控件&#x1f4c9;坐标列表控件 增添和…

【力扣】84. 柱状图中最大的矩形 <模拟、双指针、单调栈>

目录 【力扣】84. 柱状图中最大的矩形题解暴力求解双指针单调栈 【力扣】84. 柱状图中最大的矩形 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 示例…

使用ChatGPT进行创意写作的缺点

Open AI警告ChatGPT的使用者要明白此工具的局限性&#xff0c;更不应完全依赖。作为一位创作者&#xff0c;这一点非常重要&#xff0c;应尽可能地避免让版权问题或不必要的文体问题出现在自己的作品中。[1] 毕竟使用ChatGPT进行创意写作目前还有以下种种局限或缺点[2]&#xf…

5.5.webrtc的线程管理

今天呢&#xff0c;我们来介绍一下线程的管理与绑定&#xff0c;首先我们来看一下web rtc中的线程管理类&#xff0c;也就是thread manager。对于这个类来说呢&#xff0c;其实实现非常简单&#xff0c;对吧&#xff1f; 包括了几个重要的成员&#xff0c;第一个成员呢就是ins…

学习笔记230804---逻辑跳转this.$router.push在写法上的优化

今天和资深前端代码写重&#xff0c;同时写页面带参跳转&#xff0c;组长觉得他写的方式比我高端一点&#xff0c;我觉得确实是&#xff0c;像资深大佬学习。 我的写法&#xff1a; this.$router.push(/bdesign?applicationId${this.data.id}&appName${this.data.name})…

[VS/C++]如何更好的配置DLL项目中的成品输出

注意&#xff0c;解决方案与项目不放在同一个文件夹中&#xff0c;即不选中图中选项 直入主题 首先右键项目选择属性&#xff0c;或者选中项目然后AltEnter 选择配置属性下的常规 分别在四种配置中编辑输出目录如下 注意&#xff0c;四种配置要分别配置&#xff0c;一个个来…

一百六十一、Kettle——Linux上安装的kettle9.2开启carte服务(亲测、附流程截图)

一、目的 在Linux上安装好kettle9.2并且连接好各个数据库后&#xff0c;下面开启carte服务 二、实施步骤 &#xff08;一&#xff09;carte服务文件路径 kettle的Linux运行的carte服务文件是carte.sh &#xff08;二&#xff09;修改kettle安装路径下的pwd文件夹里的服务器…

Netty+springboot开发即时通讯系统笔记(四)终

实时性 1.线程池多线程&#xff0c;把消息同步给其他端和对方用户&#xff0c;其中数据持久化往往是最浪费时间的操作&#xff0c;可以使用mq异步存储&#xff0c;因为其他业务不需要拿着整条数据&#xff0c;只需要这条数据的id进行操作。 2。消息校验前置&#xff0c;放在t…

谷歌推出首款量子弹性 FIDO2 安全密钥

谷歌在本周二宣布推出首个量子弹性 FIDO2 安全密钥&#xff0c;作为其 OpenSK 安全密钥计划的一部分。 Elie Bursztein和Fabian Kaczmarczyck表示&#xff1a;这一开源硬件优化的实现采用了一种新颖的ECC/Dilithium混合签名模式&#xff0c;它结合了ECC抵御标准攻击的安全性和…

机器学习与模式识别3(线性回归与逻辑回归)

一、线性回归与逻辑回归简介 线性回归主要功能是拟合数据&#xff0c;常用平方误差函数。 逻辑回归主要功能是区分数据&#xff0c;找到决策边界&#xff0c;常用交叉熵。 二、线性回归与逻辑回归的实现 1.线性回归 利用回归方程对一个或多个特征值和目标值之间的关系进行建模…

java版本spring cloud 企业工程系统管理 工程项目管理系统源码em

工程项目管理软件&#xff08;工程项目管理系统&#xff09;对建设工程项目管理组织建设、项目策划决策、规划设计、施工建设到竣工交付、总结评估、运维运营&#xff0c;全过程、全方位的对项目进行综合管理 工程项目各模块及其功能点清单 一、系统管理 1、数据字典&#xff…

消息中间件的选择:RabbitMQ是一个明智的选择

&#x1f497;wei_shuo的个人主页 &#x1f4ab;wei_shuo的学习社区 &#x1f310;Hello World &#xff01; MQ&#xff08;Message Queue&#xff09; MQ&#xff08;消息队列&#xff09;是一种用于在应用程序之间进行异步通信的技术&#xff1b;允许应用程序通过发送和接收…

Vue3 用父子组件通信实现页面页签功能

一、大概流程 二、用到的Vue3知识 1、组件通信 &#xff08;1&#xff09;父给子 在vue3中父组件给子组件传值用到绑定和props 因为页签的数组要放在父页面中&#xff0c; data(){return {tabs: []}}, 所以顶部栏需要向父页面获取页签数组 先在页签页面中定义props用来接…

CloudCompare——统计滤波

目录 1.统计滤波2.软件实现3.完整操作4.算法源码5.相关代码 本文由CSDN点云侠原创&#xff0c;CloudCompare——统计滤波&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫。 1.统计滤波 算法原理见&#xff1a;PCL 统计滤波器…

Cpp学习——类与对象3

目录 一&#xff0c;初始化列表 1.初始化列表的使用 2.初始化列表的特点 3.必须要使用初始化列表的场景 二&#xff0c;单参数构造函数的隐式类型转换 1.内置类型的隐式类型转换 2. 自定义类型的隐式类型转换 3.多参数构造函数的隐式类型转换 4.当你不想要发生隐式类型转换…

CPU缓存一致性原理

CPU缓存一致性原理 在本站的文章CPU缓存那些事儿中&#xff0c; 介绍了cpu的多级缓存的架构和cpu缓存行cache line的结构。CPU对于缓存的操作包含读和写&#xff0c;读操作在cache line中有所涉及&#xff0c;在本文中&#xff0c;将重点讨论CPU对于缓存进行写时的行为。 单核…