代码中涉及的图片实验数据下载地址:https://download.csdn.net/download/m0_37567738/88235543?spm=1001.2014.3001.5501
代码:
import torch
import torch.nn as nn
import torch.nn.functional as F
#from utils import load_data,get_accur,train
import time
import torchvision
from torchvision import transforms
from torch.utils.data import DataLoader
import torch
import torch.optim as optim
import numpy as np
def load_data(path, batch_size):
datasets = torchvision.datasets.ImageFolder(
root = path,
transform = transforms.Compose([
transforms.ToTensor()
])
)
dataloder = DataLoader(datasets, batch_size=batch_size, shuffle=True)
return datasets,dataloder
def get_accur(preds, labels):
preds = preds.argmax(dim=1)
return torch.sum(preds == labels).item()
def train(model, epochs, learning_rate, dataloader, criterion, testdataloader):
optimizer = optim.Adam(model.parameters(),lr=learning_rate)
train_loss_list = []
test_loss_list = []
train_accur_list = []
test_accur_list = []
train_len = len(dataloader.dataset)
test_len = len(testdataloader.dataset)
for i in range(epochs):
train_loss = 0.0
train_accur = 0
test_loss = 0.0
test_accur = 0
for batch in dataloader:
imgs, labels = batch
preds = model(imgs)
optimizer.zero_grad()
loss = criterion(preds, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
train_accur += get_accur(preds,labels)
train_loss_list.append(train_loss)
train_accur_list.append(train_accur / train_len)
for batch in testdataloader:
imgs, labels = batch
preds = model(imgs)
loss = criterion(preds, labels)
test_loss += loss.item()
test_accur += get_accur(preds,labels)
test_loss_list.append(test_loss)
test_accur_list.append(test_accur / test_len)
print("epoch {} : train_loss : {}; train_accur : {}".format(i + 1, train_loss, train_accur / train_len))
return np.array(train_accur_list), np.array(train_loss_list), np.array(test_accur_list), np.array(test_loss_list)
class ResidualBlock(nn.Module):
def __init__(self, inchannel, outchannel, stride=1):
super().__init__()
self.left = nn.Sequential(
nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
nn.BatchNorm2d(outchannel),
nn.ReLU(inplace=True),
nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1,padding=1, bias=False),
# 尺寸不发生变化 通道改变
nn.BatchNorm2d(outchannel)
)
self.shortcut = nn.Sequential()
# 注意shortcut是对输入X进行卷积,利用1×1卷积改变形状
if inchannel != outchannel or stride != 1:
self.shortcut = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(outchannel))
def forward(self, X):
h = self.left(X)
# 先相加再激活
h += self.shortcut(X)
out = F.relu(h)
return out
class ResidualNet(nn.Module):
def __init__(self):
super().__init__()
self.residual_block = nn.Sequential(
ResidualBlock(3, 32),
ResidualBlock(32, 64),
ResidualBlock(64, 32),
ResidualBlock(32, 3)
)
self.fc1 = nn.Linear(3 * 64 * 64, 1024)
self.fc2 = nn.Linear(1024, 3)
def forward(self, X):
h = self.residual_block(X)
h = h.view(-1, 3 * 64 * 64)
h = self.fc1(h)
out = self.fc2(h)
return out
if __name__ == "__main__":
train_path = "./cnn/train/"
test_path = "./cnn/test/"
_, train_dataloader = load_data(train_path, 32)
_, test_dataloader = load_data(test_path, 32)
model = ResidualNet()
critic = nn.CrossEntropyLoss()
epoch = 20
lr = 0.01
start = time.clock()
print("Start training model.....")
train_accur_list, train_loss_list, test_accur_list, test_loss_list = train(model, epoch, lr, train_dataloader,
critic, test_dataloader)
end = time.clock()
print("Train cost: {} s".format(end - start))
test_accur = 0
for batch in test_dataloader:
imgs, labels = batch
preds = model(imgs)
test_accur += get_accur(preds, labels)
print("Accuracy on test datasets : {}".format(test_accur / len(test_dataloader.dataset)))
执行结果: