C++------利用C++实现二叉搜索树【数据结构】

文章目录

  • 二叉搜索树
    • 概念
    • 二叉搜索树的操作
      • 查找
      • 插入
      • 删除
    • 二叉搜索树的应用

二叉搜索树

概念

什么是二叉搜索树,二叉搜索树就是指左孩子永远比根小右孩子永远比根大。这个规则适用于所有的子树。
在这里插入图片描述
上面的就是一棵二叉搜索树,我们还可以发现这棵树走一个中序遍历序列是有序的,所以它又被称为二叉排序树。

二叉搜索树的操作

二叉搜索树的操作主要分为以下几点,查找, 插入,删除。

查找

算法思想:二叉搜索树的查找算法是这样的,从根的地方开始找,如果要找的key比根大就到右子树去找,如果比根小就到左子树找。时间复杂度最差为O(N)最优为O(logn),如果一棵树走完了还没有找到说明这个数字不在这棵树内。
O(N)时间复杂度是下面这棵树的查找产生的。
在这里插入图片描述
我们要使树的高度保持为logN就必须引入平衡二叉搜索树的概念,这个部分我们在后面的AVL和红黑树部分讲解。
非递归算法:

	bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur != nullptr)
			{
				if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else
				{
					return true;
				}
			}
			return false;
		}

递归算法:
key小于就递归找左树,大于就递归找右树

	bool _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				_FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				_FindR(root->_left, key);
			}
			else
			{
				return true;
			}
		}

插入

插入分为两种情况:
1、如果树为空,则直接新增节点,赋值给_root指针。
2、树不为空,按二叉搜索树性质查找插入位置,插入新节点。
在这里插入图片描述
非递归算法

bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			return true;
		}

递归算法

		bool _InsertR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}
			if (root->_key > key)
			{
				return _InsertR(root->_left, key);
			}
			else if (root->_key < key)
			{
				return _InsertR(root->_right, key);
			}
			else
			{
				return false;
			}
		}

删除

首先查找元素是否在二叉搜索树中,如果不存在,则返回,否则要删除的节点可能分下面四种情况:
a.要删除的节点无孩子节点
b.要删除的节点只有左孩子节点
c.要删除的节点只有右孩子节点
d.要删除的节点有左右孩子节点
情况b,c可以合成一个情况,那就是只有一个孩子节点。
情况b:删除该节点且是被删除节点的双亲节点指向被删除节点的左孩子节点—直接删除
在这里插入图片描述

情况c:删除该节点且是被删除节点的双亲节点指向被删除节点的右孩子节点—直接删除
在这里插入图片描述

情况d:在它的左子树中寻找最大节点,用它的值填补到被删除节点中,再来处理该节点的删除问题—替换法删除。
在这里插入图片描述
非递归算法:

bool Erase(const K& key)
		{
			Node* cur = _root;
			Node* parent = nullptr;

			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//左边为空
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}
					}
					else
					{
						//左右都不为空
						//找到左树中的最大值为替代节点
						Node* parent = cur;
						Node* leftmax = _root->_left;
						while (leftmax->_right != nullptr)
						{
							parent = leftmax;
							leftmax = leftmax->_right;
						}

						swap(cur->_key, leftmax->_key);

						if (parent->_left == leftmax)
						{
							parent->_left = leftmax->_left;
						}
						else
						{
							parent->_right = leftmax->_left;
						}
						cur = leftmax;
					}
					delete cur;
					return true;
				}
			}
			return false;
		}

非递归算法:

//Node*& 引用是关键,没有引用就不会链接起来,不用引用也可以用二级指针。
bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				Node* del = root;
				//1、左为空
				//2、右为空
				//3、左右都不为空

				if (root->_left == nullptr)
				{
					root = root->_right;
				}
				else if (root->_right == nullptr)
				{
					root = root->_left;
				}
				else
				{
					Node* leftMax = root->_left;
					while (leftMax->_left)
					{
						leftMax = leftMax->_right;
					}
					swap(root->_key, leftMax->_key);

					return _EraseR(root->_left, key);
				}
				delete del;
				return true;
			}
		}

完整代码

namespace name
{
	template<class K>
	struct BSTreeNode
	{
		BSTreeNode<K>* _left;
		BSTreeNode<K>* _right;
		K _key;

		BSTreeNode(const K& key)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
		{}
	};
	template <class K>
	class BSTree
	{
		typedef BSTreeNode<K> Node;
	public:
		//构造函数
		BSTree()
			:_root(nullptr)
		{}
		BSTree(const BSTree<K>& t)
		{
			_root = Copy(t._root);
		}
		BSTree<K>& operator=(BSTree<K> t)
		{
			swap(_root, t._root);
			return *this;
		}
		~BSTree()
		{
			Destory(_root);
		}
		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* cur = _root;
			Node* parent = nullptr;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}
			cur = new Node(key);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}
			return true;
		}
		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur != nullptr)
			{
				if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else
				{
					return true;
				}
			}
			return false;
		}
		bool Erase(const K& key)
		{
			Node* cur = _root;
			Node* parent = nullptr;

			while (cur)
			{
				if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else
				{
					//左边为空
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}
					}
					else
					{
						//左右都不为空
						//找到左树中的最大值为替代节点
						Node* parent = cur;
						Node* leftmax = _root->_left;
						while (leftmax->_right != nullptr)
						{
							parent = leftmax;
							leftmax = leftmax->_right;
						}

						swap(cur->_key, leftmax->_key);

						if (parent->_left == leftmax)
						{
							parent->_left = leftmax->_left;
						}
						else
						{
							parent->_right = leftmax->_left;
						}
						cur = leftmax;
					}
					delete cur;
					return true;
				}
			}
			return false;
		}
		void Inorder()
		{
			_Inorder(_root);
			cout << endl;
		}
		bool FindR(const K& key)
		{
			return _FindR(_root, key);
		}
		bool InsertR(const K& key)
		{
			return _InsertR(_root, key);
		}
		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}
	private:
		void Destory(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			Destory(root->_left);
			Destory(root->_right);
			delete root;
			root = nullptr;
		}
		Node* Copy(Node* root)
		{
			if (root == nullptr)
			{
				return nullptr;
			}
			Node* copyroot = new Node(root->_key);
			copyroot->_left = Copy(root->_left);
			copyroot->_right = Copy(root->_right);
			return copyroot;
		}
		bool _InsertR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}
			if (root->_key > key)
			{
				return _InsertR(root->_left, key);
			}
			else if (root->_key < key)
			{
				return _InsertR(root->_right, key);
			}
			else
			{
				return false;
			}
		}
		bool _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				_FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				_FindR(root->_left, key);
			}
			else
			{
				return true;
			}
		}
		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				Node* del = root;
				//1、左为空
				//2、右为空
				//3、左右都不为空

				if (root->_left == nullptr)
				{
					root = root->_right;
				}
				else if (root->_right == nullptr)
				{
					root = root->_left;
				}
				else
				{
					Node* leftMax = root->_left;
					while (leftMax->_left)
					{
						leftMax = leftMax->_right;
					}
					swap(root->_key, leftMax->_key);

					return _EraseR(root->_left, key);
				}
				delete del;
				return true;
			}
		}
		void _Inorder(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}
			_Inorder(root->_left);
			cout << root->_key << " ";
			_Inorder(root->_right);
		}
		Node* _root;
	};
}

二叉搜索树的应用

应用主要是分为了K模型和KV模型,后面的set为K模型,map为KV模型,具体是这样的:

  1. K模型:K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到 的值。 比如:给一个单词word,判断该单词是否拼写正确,具体方式如下: 以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树
    在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。
  2. KV模型:每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见: 比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英 文单词与其对应的中文<word,chinese>就构成一种键值对; 再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word,count>就构成一种键值对。
    上面的代码时K模型的,下面的代码时KV模型的。
namespace name1
{
	template<class K,class V>
	struct BSTreeNode
	{
		BSTreeNode<K,V>* _left;
		BSTreeNode<K,V>* _right;
		K _key;
		V _value;
		BSTreeNode(const K& key,const V& value)
			:_left(nullptr)
			,_right(nullptr)
			,_key(key)
			,_value(value)
		{}
	};
	template <class K,class V>
	class BSTree
	{
		typedef BSTreeNode<K,V> Node;
	public:
		//构造函数
		BSTree()
			:_root(nullptr)
		{}
		BSTree(const BSTree<K,V>& t)
		{
			_root = Copy(t._root);
		}
		BSTree<K,V>& operator=(BSTree<K,V> t)
		{
			swap(_root, t._root);
			return *this;
		}
		~BSTree()
		{
			Destory(_root);
		}
		void Inorder()
		{
			_Inorder(_root);
			cout << endl;
		}
		Node* FindR(const K& key)
		{
			return _FindR(_root,key);
		}
		bool InsertR(const K& key,const V& value)
		{
			return _InsertR(_root, key,value);
		}
		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}
	private:
		void Destory(Node* root)
		{
			if (root == nullptr)
			{
				return;
			}

			Destory(root->_left);
			Destory(root->_right);
			delete root;
			root = nullptr;
		}
		Node* Copy(Node* root)
		{
			if (root == nullptr)
			{
				return nullptr;
			}
			Node* copyroot = new Node(root->_key);
			copyroot->_left = Copy(root->_left);
			copyroot->_right = Copy(root->_right);
			return copyroot;
		}
		bool _InsertR(Node*& root,const K& key,const V& value)
		{
			if (root == nullptr)
			{
				root = new Node(key,value);
				return true;
			}
			if (root->_key > key)
			{
				return _InsertR(root->_left, key, value);
			}
			else if (root->_key < key)
			{
				return _InsertR(root->_right, key, value);
			}
			else
			{
				return false;
			}
		}
		Node* _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
			{
				return nullptr;
			}
			if (root->_key < key)
			{
				return _FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _FindR(root->_left, key);
			}
			else
			{
				return root;
			}
		}
		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				return false;
			}
			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				Node* del = root;
				//1、左为空
				//2、右为空
				//3、左右都不为空
				
				if (root->_left == nullptr)
				{
					root = root->_right;
				}
				else if (root->_right == nullptr)
				{
					root = root->_left;
				}
				else
				{
					Node* leftMax = root->_left;
					while (leftMax->_left)
					{
						leftMax = leftMax->_right;
					}
					swap(root->_key, leftMax->_key);

					return _EraseR(root->_left, key);
				}
				delete del;
				return true;
			}
		}
		void _Inorder(Node* root)
		{
			if (root==nullptr)
			{
				return;
			}
			_Inorder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_Inorder(root->_right);
		}
		Node* _root;
	};
}

KV模型的测试:

void Test_BSTree7()
{
	string arr[] = { "西瓜", "西瓜", "苹果", "西瓜", "苹果", "苹果", "西瓜", "苹果", "香蕉", "苹果", "香蕉" };
	name1::BSTree<string, int> countTree;
	for (auto& str : arr)
	{
		//没有找到证明是第一次出现
		auto ret = countTree.FindR(str);
		if (ret == nullptr)
		{
			countTree.InsertR(str, 1);
		}
		else
		{
			ret->_value++;
		}
	}
	countTree.Inorder();
}
int main()
{
	//Test_BSTree();
	//Test_BSTree1();
	//Test_BSTree2();
	//Test_BSTree3();
	//Test_BSTree4();
	//Test_BSTree5();
	//Test_BSTree6();
	Test_BSTree7();
	return 0;
}

在这里插入图片描述
好的我们下一篇再见!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/82002.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

stm32开关控制led灯泡(附Proteus电路图)

说明&#xff1a;我的灯泡工作电压2V&#xff0c;电流设置为10um,注意了不是10毫安时微安啊&#xff0c;要不然电流太小亮不起来的。 2&#xff1a;我用的开关不是按钮button而是switch, 3&#xff1a;PB0,PB1默认都是低电平&#xff0c;采用了PULLDOWN模式&#xff0c;如果设…

【排序】插入排序 希尔排序(改进)

文章目录 插入排序时间复杂度空间复杂度 代码希尔排序时间复杂度空间复杂度 代码 以从小到大排序为例进行说明。 插入排序 插入排序就是从前向后&#xff08;i1开始&#xff09;进行选择&#xff0c;如果找到在i之前&#xff08;分配一个j下标进行寻找&#xff09;有比array[i…

uniapp选择只选择月份demo效果(整理)

<template><view style"margin-top: 200rpx;"><!-- mode"multiSelector" 多列选择器 --><view><picker :range"years" :value"echoVal" change"yearChange" mode"multiSelector">{…

Android Studio 新建module报错:No signature of method

android平台uni原生插件开发过程中&#xff0c;使用Android Studio 新增 module 报错 选择app --> create new module &#xff0c;填写相关信息 Android Studio 新建module报错&#xff1a; 原因&#xff1a;Android Studio 版本过高&#xff0c;新增了namespace&#x…

Elasticsearch复合查询之Boosting Query

前言 ES 里面有 5 种复合查询&#xff0c;分别是&#xff1a; Boolean QueryBoosting QueryConstant Score QueryDisjunction Max QueryFunction Score Query Boolean Query在之前已经介绍过了&#xff0c;今天来看一下 Boosting Query 用法&#xff0c;其实也非常简单&…

轻松搭建书店小程序

在现今数字化时代&#xff0c;拥有一个自己的小程序成为了许多企业和个人的追求。而对于书店经营者来说&#xff0c;拥有一个能够提供在线购书服务的小程序将有助于吸引更多的读者&#xff0c;并提升销售额。本文将为您介绍如何轻松搭建书店小程序&#xff0c;并将其成功上线。…

B树和B+树MySQL为什么用B+树?

文章目录 B树和B树B树B树的定义B树的插入操作删除操作 B树B树的定义B树的插入操作删除操作 B树和B树的区别?MySQL数据库为啥用B树作为索引&#xff0c;而不用B树? B树和B树 原文链接&#xff1a;https://blog.csdn.net/jinking01/article/details/115130286 B树 B树的定义…

NLP序列标注问题,样本不均衡怎么解决?

【学而不思则罔&#xff0c;思而不学则殆】 1.问题 NLP序列标注问题&#xff0c;样本不均衡怎么解决&#xff1f; 2.解释 以命名实体识别&#xff08;NER&#xff09;为例&#xff0c;这个样本不均衡有两种解释&#xff1a; &#xff08;1&#xff09;实体间类别数量不均衡…

关于vant2 组件van-dropdown-item,在IOS手机上,特定条件下无法点击问题的探讨

情景重现 先贴有问题的代码 <template><div :class"showBar ? homeContain : homeContain-nobar"><div class"contant" id"content"><van-dialog v-model"loading" :before-close"onBeforeClose" :…

【Python从入门到进阶】32、bs4的基本使用

接上篇《31、使用JsonPath解析淘票票网站地区接口数据》 上一篇我们介绍了如何使用JSONPath来解析淘票票网站的地区接口数据&#xff0c;本篇我们来学习BeautifulSoup的基本概念&#xff0c;以及bs4的基本使用。 一、BeautifulSoup简介 1、bs4基本概念 BeautifulSoup是一个P…

.Net Core 动态加载和卸载程序集

从 .Net Core 3.0开始支持程序集的加载和卸载&#xff0c;在 .Net FrameWork中使用独立的应用程序域来实现同样的功能&#xff0c;.Net Core 不支持创建多个应用程序域&#xff0c;所以无法使用多个应用程序域来实现程序集动态加载和卸载。 AssemblyLoadContext 程序集加载上下…

使用pnpm workspace管理Monorepo架构

在开发项目的过程中&#xff0c;我们需要在一个仓库中管理多个项目&#xff0c;每个项目有独立的依赖、脚手架&#xff0c;这种形式的项目结构我们称之为Monorepo&#xff0c;pnpm workspace就是管理这类项目的方案之一。 一、pnpm简介 1、pnpm概述 pnpm代表performance npm…

Docker容器:docker基础概述、安装、网络及资源控制

文章目录 一.docker容器概述1.什么是容器2. docker与虚拟机的区别2.1 docker虚拟化产品有哪些及其对比2.2 Docker与虚拟机的区别 3.Docker容器的使用场景4.Docker容器的优点5.Docker 的底层运行原理6.namespace的六项隔离7.Docker核心概念 二.Docker安装 及管理1.安装 Docker1.…

525. 连续数组

525. 连续数组 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a; 原题链接&#xff1a; 525. 连续数组 https://leetcode.cn/problems/contiguous-array/description/ 完成情况&#xff1a; 解题思路&#xff1a; 参考代码&#xff1a; …

初出茅庐的小李博客之STM32CubeMx配置定时器的编码器模式

STM32CubeMx配置定时器的编码器模式 上次文章写了编码器是如何工作的&#xff0c;今天就来用STM32F103C8T6的TIM3的通道1跟通道2编写一个编码器识别程序。 编程思路&#xff1a; A相:TIM3_CH1 B相:TIM3_CH2 SWITCH:PB5&#xff08;外部中断的方式&#xff09; 实现效果&a…

基于Java/springboot铁路物流数据平台的设计与实现

摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;铁路物流数据平台当然也不能排除在外&#xff0c;从文档信息、铁路设计的统计和分析&#xff0c;在过程中会产生大量的、各…

基于SpringCloud的会议室预约系统Java基于微服务的会议室报修系统【源码+lw】

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、微信小程序、Python、Android、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&#x1f495…

Docker入门——实战图像分类

一、背景 思考&#xff1a; 在一个项目的部署阶段&#xff0c;往往需要部署到云服务器或者是终端设备上&#xff0c;而环境的搭建往往是最费时间和精力的&#xff0c;特别是需要保证运行环境一致性&#xff0c;有什么办法可以批量部署相同环境呢&#xff1f; Docker本质——…

Django模型基础

文章目录 一、models字段类型概述属性命名限制使用方式逻辑删除和物理删除常用字段类型 二、常用字段参数常用字段选项(通过字段选项&#xff0c;可以实现对字段的约束) 实践创建模型执行迁移命令 并 创建超级用户登录admin后台添加文件和图片字段定义模型字段和约束及在Admin后…

vscode如何汉化

首先我们到vscode官网下载 链接如下&#xff1a; Visual Studio Code - Code Editing. Redefined 根据自己需要的版本下载就好 下载并且安装完毕之后 运行vscode 然后按快捷键 CTRLSHIFTX 打开安装扩展界面 搜索简体中文 安装就可以了 谢谢大家观看