OpenCV基础知识(6)— 滤波器

前言:Hello大家好,我是小哥谈。在尽量保留原图像信息的情况下,去除图像内噪声、降低细节层次信息等一系列过程,被叫做图像的平滑处理(或者叫图像的模糊处理)。实现平滑处理最常用的工具就是滤波器。通过调节滤波器的参数,可以控制图像的平滑程度。OpenCV提供了种类丰富的滤波器,每种滤波器使用的算法均不相同,但都能对图像中的像素值进行微调,让图像呈现平滑效果。本节将介绍均值滤波器、中值滤波器、高斯滤波器和双边滤波器的使用方法。🌈

前期回顾:

              史上最全OpenCV常用方法及使用说明汇总,建议收藏!

              OpenCV基础知识(1)— OpenCV概述

              OpenCV基础知识(2)— 图像处理的基本操作

              OpenCV基础知识(3)— 图像数字化基础(像素、色彩空间) 

              OpenCV基础知识(4)— 绘制图形

              OpenCV基础知识(5)— 几何变换 

              目录

🚀1.均值滤波器

🚀2.中值滤波器

🚀3.高斯滤波器

🚀4.双边滤波器

🚀5.总结

🚀1.均值滤波器

图像中可能会出现这样一种像素:该像素与周围像素的差别非常大,导致从视觉上就能看出该像素无法与周围像素组成可识别的图像信息,降低了整个图像的质量。这种“格格不入”的像素就被称为图像的噪声。如果图像中的噪声都是随机的纯黑像素或者纯白像素,这样的噪声也被称为“椒盐噪声”或“盐噪声”。

以一个像素为核心,核心周围像素可以组成一个n行n列(简称 n×n)的矩阵,这样的矩阵结构在滤波操作中被称为“滤波核”。矩阵的行列数决定了滤波核的大小,例如下图所示,滤波核大小为3×3,包含9个像素。🌴

均值滤波器(也被称为低通滤波器)可以把图像中的每一个像素都当做滤波核的核心,然后计算出核内所有像素的平均值,最后让核心像素值等于这个平均值。

OpenCV将均值滤波器封装成了blur()方法,其语法如下:

dst = cv2.blur(src,ksize,anchor,borderType)

参数说明:

src:被处理的图像

ksize:滤波核大小,其格式为(高度,宽度),建议使用如(3,3)、(5,5)等宽高相等的奇数边长。滤波核越大,处理之后的图像就越模糊。

anchor:可选参数,滤波核的锚点,建议采用默认值,方法可以自动计算锚点。

boderType:可选参数,边界样式,建议采用默认值。

返回值说明:

dst:经过均值滤波处理之后的图像

案例:

使用大小为9×9的滤波核对图像进行均值滤波操作,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.blur(img, (9, 9))  # 使用大小为9*9的滤波核进行均值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9*9", dst1)
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

滤波核越大,处理之后的图像就越模糊。 


🚀2.中值滤波器

中值滤波器的原理与均值滤波器非常相似,唯一的不同就是不会计算像素的平均值,而是将所有像素值进行排序,把最中间的像素值取出,赋值给核心像素。

OpenCV将中值滤波器封装成了medianBlur()方法,其语法如下:

dst = cv2.medianBlur(src,ksize)

参数说明:

src:被处理的图像

ksize:滤波核的边长,必须是大于1的奇数,例如3、5、7等。方法会根据此边长自动创建一个正方形的滤波核。

返回值说明:

dst:经过中值滤波处理之后的图像

案例:

使用边长为9的滤波核对图像进行中值滤波操作,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.medianBlur(img, 9)  # 使用宽度为9的滤波核进行中值滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9", dst1)  # 显示滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

1.中值滤波器语法中的ksize参数是边长,而其它滤波器的ksize参数通常是(高,宽) 。

2.滤波核的边长越长,处理之后的图像就越模糊。

3.中值滤波处理的图像会比均值滤波处理的图像丢失更多细节。


🚀3.高斯滤波器

高斯滤波也被称为高斯模糊、高斯平滑,是目前应用最广泛的平滑处理算法。高斯滤波可以很好地在降低图片噪声、细节层次的同时保留更多的图像信息,经过处理的图像会呈现“磨砂玻璃”的滤镜效果。

OpenCV将高斯滤波器封装成了GaussianBlur()方法,其语法如下:

dst = cv2.GaussianBlur(src,ksize,sihmaX,sigmaY,borderType)

参数说明:

src:被处理的图像

ksize:滤波核的大小,宽、高必须是奇数,例如(3,3)、(5,5)等。

sigmaX:卷积核水平方向的标准差

sigmaY:卷积核垂直方向的标准差。修改 sigmaX 或 sigmaY 的值都可以改变卷积核中的权重比例。如果不知道如何设计这两个参数值,就直接把这两个参数的值写成0,方法就会根据滤波核的大小自动计算出合适的权重比例。

boderType:可选参数,边界样式,建议使用默认值。

返回值说明:

dst:经过高斯滤波处理之后的图像

案例:

使用9×9的滤波核对图像进行高斯滤波操作,水平方向和垂直方向的标准差参数值全部为0,代码如下:

import cv2
img = cv2.imread("amygdalus triloba.jpg")  # 读取原图
dst1 = cv2.GaussianBlur(img, (9, 9), 0, 0)  # 使用大小为9*9的滤波核进行高斯滤波
cv2.imshow("img", img)  # 显示原图
cv2.imshow("9", dst1)  # 显示滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

和均值滤波、中值滤波处理的图像相比,高斯滤波处理的图像更加平滑,保留的图像信息更多,更容易辨认。 


🚀4.双边滤波器

不管是均值滤波、中值滤波还是高斯滤波,都会使整幅图像变得平滑,图像中的边界会变得模糊不清。双边滤波是一种在平滑处理过程中可以有效保护边界信息的滤波操作

双边滤波器会自动判断滤波核处于“平坦”区域还是“边缘”区域:如果滤波核处于“平坦”区域,则会使用类似高斯滤波的算法进行滤波;如果滤波核处于“边缘”区域,则加大“边缘”像素的权重,尽可能让这些像素值保持不变。

OpenCV将双边滤波器封装成了bilateralFilter()方法,其语法如下:

dst = cv2.bilateralFilter(src,d,sigmaColor,sigmaSpace,borderType)

参数说明:

src:被处理的图像

d:以当前像素为中心的整个滤波区域的直径。如果是d<0,则自动根据 sigmaSpace 参数计算得到。该值与保留的边缘信息数量成正比,与方法运行效率成反比。

sigmaColor:参与计算的颜色范围,这个值是像素颜色值与周围颜色值的最大差值,只有颜色值之差小于这个值时,周围的像素才会进行滤波计算。值为255时,表示所有颜色都参与计算。

sigmaSpace:坐标空间的σ(sigma)值,该值越大,参与计算的像素数量就越多。

borderType:可选参数,边界样式,建议默认。

返回值说明:

dst:经过双边滤波处理之后的图像

案例:

使用大小为(15,15)的滤波核对图像进行高斯滤波处理,同样使用15作为范围直径对图像进行双边滤波处理,观察两种滤波处理之后的图像边缘有什么差别,代码如下:

import cv2
img = cv2.imread("1.webp")  # 读取原图
dst1 = cv2.GaussianBlur(img, (15, 15), 0, 0)  # 使用大小为15*15的滤波核进行高斯滤波
# 双边滤波,选取范围直径为15,颜色差为120
dst2 = cv2.bilateralFilter(img, 15, 120, 100)
cv2.imshow("img", img)  # 显示原图
cv2.imshow("Gauss", dst1)  # 显示高斯滤波效果
cv2.imshow("bilateral", dst2)  # 显示双边滤波效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

运行效果如图所示:

说明:♨️♨️♨️

由上面三张图对比可得,高斯滤波模糊了整个画面,但双边滤波保留了较清晰的边缘信息。


🚀5.总结

均值滤波器:中央像素取平均值,效果像马赛克。

中值滤波器:中央像素取排序后的中间值,效果像水彩画。

高斯滤波器:按照卷积核权重计算中央像素值,毛玻璃效果。

双边滤波器:保留边缘信息,边缘清晰。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81732.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[国产MCU]-W801开发实例-开发环境搭建

W801开发环境搭建 文章目录 W801开发环境搭建1、W801芯片介绍2、W801芯片特性3、W801芯片结构4、开发环境搭建1、W801芯片介绍 W801芯片是联盛德微电子推出的一款高性价比物联网芯片。 W801 芯片是一款安全 IoT Wi-Fi/蓝牙 双模 SoC芯片。芯片提供丰富的数字功能接口。支持2.…

麻辣烫数据可视化,麻辣烫市场将持续蓬勃发展

麻辣烫,这道源自中国的美食,早已成为人们生活中不可或缺的一部分。它独特的香辣口味,让人忍不住每每流连忘返。与人们的关系,简直如同挚友一般。每当寒冷的冬日或疲惫的时刻,麻辣烫总是悄然走进人们的心房,…

计算机毕设项目之基于django+mysql的疫情实时监控大屏系统(前后全分离)

系统阐述的是一款新冠肺炎疫情实时监控系统的设计与实现,对于Python、B/S结构、MySql进行了较为深入的学习与应用。主要针对系统的设计,描述,实现和分析与测试方面来表明开发的过程。开发中使用了 django框架和MySql数据库技术搭建系统的整体…

n5173b是德科技keysight N5173B信号发生器

产品概述 是德科技/安捷伦N5173B EXG模拟信号发生器 当您需要平衡预算和性能时,是德科技N5173B EXG微波模拟信号发生器是经济高效的选择。它提供解决宽带滤波器、放大器、接收机等参数测试的基本信号。执行基本LO上变频或CW阻塞,低成本覆盖13、20、31.…

Servlet 初步学习

文章目录 Servlet1 简介2 快速入门3 执行流程4 生命周期5 方法介绍6 体系结构7 urlPattern配置8 XML配置 Servlet 1 简介 Servlet是JavaWeb最为核心的内容,它是Java提供的一门 动态 web资源开发技术。 使用Servlet就可以实现,根据不同的登录用户在页面…

windows权限维持—黄金白银票据隐藏用户远控RustDeskGotoHttp

windows权限维持—黄金白银票据&隐藏用户&远控&RustDesk&GotoHttp 1. 前置1.1. 初始问题1.1.1. 解决办法 2. 隐藏用户2.1. 工具原理2.2. 案例操作2.2.1. 单机添加用户2.2.1.1. 工具添加用户2.2.1.2. 工具查看隐藏用户2.2.1.3. 本地查看隐藏用户 2.2.2. 域内添加…

玩机搞机----面具模块的组成 制作模块

root面具相信很多玩家都不陌生。早期玩友大都使用第三方卡刷补丁来对系统进行各种修复和添加功能。目前面具补丁代替了这些操作。今天的帖子了解下面具各种模块的组成和几种普遍的代码组成。 Magisk中运行的每个单独的shell脚本都将在内部的BusyBox的shell中执行。对于与第三方…

代码随想录算法训练营day39 | 62. 不同路径,63. 不同路径 II

目录 62. 不同路径 63. 不同路径 II 62. 不同路径 类型:动态规划 难度:medium 思路: 应用二维数组的动态规划,到达某个方格的方法数目,为这个方格的上一个方格和左一个方格的方法数目和。 需要先初始化第一行和第一…

关于查看处理端口号和进程[linux]

查看端口号 lsof -i:端口号如果-bash: lsof: 未找到命令那我们可以执行yum install lsof 删除端口号进程 一般我们都会使用kill命令 kill -l#列出所有可用信号1 (HUP):重新加载进程。9 (KILL):杀死一个进程。15 (TERM):正常停止一个进程。 …

PyTorch Lightning:通过分布式训练扩展深度学习工作流

一、介绍 欢迎来到我们关于 PyTorch Lightning 系列的第二篇文章!在上一篇文章中,我们向您介绍了 PyTorch Lightning,并探讨了它在简化深度学习模型开发方面的主要功能和优势。我们了解了 PyTorch Lightning 如何为组织和构建 PyTorch 代码提…

详解junit

目录 1.概述 2.断言 3.常用注解 3.1.Test 3.2.Before 3.3.After 3.4.BeforeClass 3.5.AfterClass 4.异常测试 5.超时测试 6.参数化测试 1.概述 什么是单元测试: 单元测试,是针对最小的功能单元编写测试代码,在JAVA中最小的功能单…

openpose姿态估计【学习笔记】

文章目录 1、人体需要检测的关键点2、Top-down方法3、Openpose3.1 姿态估计的步骤3.2 PAF(Part Affinity Fields)部分亲和场3.3 制作PAF标签3.4 PAF权值计算3.5 匹配方法 4、CPM(Convolutional Pose Machines)模型5、Openpose5.1 …

博客系统之功能测试

博客系统共有:用户登录功能、发布博客功能、查看文章详情功能、查看文章列表功能、删除文章功能、退出功能 1.登录功能: 1.1测试对象:用户登录 1.2测试用例 方法:判定表 用例 编号 操作步骤预期结果实际结果截图1 1.用户名正确…

【C++从0到王者】第二十一站:继承

文章目录 前言一、继承的概念及定义1. 继承的概念2.继承的格式3.继承关系与访问限定符 二、基类和派生类的赋值转换三、继承中的作用域四、派生类的默认成员函数五、继承与友元六、继承与静态成员 前言 继承是面向对象的三大特性之一。我们常常会遇到这样的情况。很多角色的信…

一、docker及mysql基本语法

文章目录 一、docker相关命令二、mysql相关命令 一、docker相关命令 &#xff08;1&#xff09;拉取镜像&#xff1a;docker pull <镜像ID/image> &#xff08;2&#xff09;查看当前docker中的镜像&#xff1a;docker images &#xff08;3&#xff09;删除镜像&#x…

Python web实战之细说 Django 的单元测试

关键词&#xff1a; Python Web 开发、Django、单元测试、测试驱动开发、TDD、测试框架、持续集成、自动化测试 大家好&#xff0c;今天&#xff0c;我将带领大家进入 Python Web 开发的新世界&#xff0c;深入探讨 Django 的单元测试。通过本文的实战案例和详细讲解&#xff…

DNS域名解析服务器

一、DNS简介 1、因特网的域名结构 2、域名服务器的类型划分 二、DNS域名解析的过程 三、DNS服务器配置 两个都定义&#xff0c;ttl的优先&#xff1a; 能解析&#xff0c;不能拼通&#xff08;没有13这个主机&#xff09; 别名&#xff1a; 测试&#xff1a; 主&#xff08;192…

AI在日常生活中的应用:从语音助手到自动驾驶

文章目录 AI的定义和发展AI在日常生活中的应用1. **智能语音助手**2. **智能家居**3. **智能医疗**4. **自动驾驶** 代码示例&#xff1a;使用Python实现基于机器学习的图片分类AI的未来前景结论 &#x1f389;欢迎来到AIGC人工智能专栏~探索AI在日常生活中的应用 ☆* o(≧▽≦…

fiddler抓包问题记录,支持https、解决 tunnel to 443

fiddler下载安装步骤及基本配置 fiddler抓包教程&#xff0c;如何抓取HTTPS请求&#xff0c;详细教程 可能遇到的问题及解决方案 1. 不能正常访问页面&#xff08;所有https都无法访问&#xff09; 解决方案&#xff1a;查看下面配置是否正确 Rules-customization 找到 OnB…

Django进阶:DRF(Django REST framework)

什么是DRF&#xff1f; DRF即Django REST framework的缩写&#xff0c;官网上说&#xff1a;Django REST framework是一个强大而灵活的工具包&#xff0c;用于构建Web API。 简单来说&#xff1a;通过DRF创建API后&#xff0c;就可以通过HTTP请求来获取、创建、更新或删除数据(…