3D沉浸式旅游网站开发案例复盘【Three.js】

Plongez dans Lyon网站终于上线了。 我们与 Danka 团队和 Nico Icecream 共同努力,打造了一个令我们特别自豪的流畅的沉浸式网站。

这个网站是专为 ONLYON Tourism 和会议而建,旨在展示里昂最具标志性的活动场所。观看简短的介绍视频后,用户可以进入城市的交互式风景如画的地图,所有场馆都建模为 3D 对象。 每个建筑物都可以点击,进入一个详细说明位置信息的专用页面。

在这里插入图片描述

推荐:用 NSDT编辑器 快速搭建可编程3D场景。

1、打造沉浸式体验

主要网站导航体验依赖于卡通般的 WebGL 场景,其中包含大量景观元素、云彩、动画车辆、波光粼粼的河流,当然还有建筑物。

总而言之,它由 63 个几何图形、48 个纹理、32234 个三角形(以及一些后期处理魔法)组成。 当你处理大量对象时,必须组织代码架构并使用一些技巧来优化性能。

在这里插入图片描述

2、3D场景

所有模型均由才华横溢的 3D 艺术家 Nicolas Dufoure(又名 Icecream)在 3ds Max 中创建,然后使用 Blender 导出为 GTLF 对象。如果你有一些现成的3D模型可以利用,那么可以使用这个在线3D格式转换工具将它们转换成GLTF模型,这会节省不少时间。

2.1 艺术指导和视觉构成

Nico 和 Danka 团队从地图的早期迭代开始了项目的创作过程,并很快确定了低多边形和丰富多彩的艺术方向。

在这里插入图片描述

与客户品牌调色板相匹配的早期地图迭代之一

我们知道必须添加两打可点击的建筑物,因此我们必须在视觉构图、导航便利性和性能之间找到适当的平衡。

在这里插入图片描述

左:第一个场景合成测试渲染,右:早期 webgl 压力测试

为了将绘制的三角形数量保持在最低限度,我们还很快决定限制场景左侧和右侧远侧的 3D 对象的数量。 但过了一段时间,我们意识到我们实际上必须阻止用户看到这些区域。

在这里插入图片描述

这个地方看起来很空,不是吗?

2.2 相机操作

为了避免平移、缩放和动画之间的任何冲突,我很早就决定从头开始编写相机控件的代码。 事实证明这非常方便,因为之后为相机可能的位置添加阈值并不困难。

在这里插入图片描述

白色三角形代表我们实际的相机范围

这样,我们成功地限制了相机的移动,同时仍然允许用户探索所有地图重要区域。

2.3 烘焙和压缩纹理

为了节省大量 GPU 工作负载,Nico 和我同意的另一件事是用全局照明和阴影烘焙所有纹理。

当然,这意味着更多的建模工作,如果你的场景需要频繁更改,这可能会很烦人。 但它减轻了 GPU 的大量计算负担(光照阴影、阴影贴图……),在我们的例子中,这绝对是值得的。
在这里插入图片描述
在这里插入图片描述

3D场景建模概述

当处理如此数量的纹理(通常为 1024x1024、2048x2048 甚至 4096x4096 像素宽)时,你应该考虑的另一件事是使用基础压缩纹理。

如果你从未听说过,基础纹理基本上比 jpeg/png 纹理占用更少的 GPU 内存。 当它们从 CPU 上传到 GPU 时,它们还可以降低主线程瓶颈。

你可以在这里非常轻松地生成基础纹理。

3、代码架构和组织

当需要处理如此多的资源时,组织代码的最佳方法是创建几个 javascript 类(或函数,当然取决于你)并将它们组织在目录和文件中。

通常,我是这样组织该项目的文件和文件夹的:

webgl
|-- data
|   |-- objects.js
|   |-- otherObjects.js
|-- shaders
|   |-- customShader.js
|   |-- anotherShader.js
|-- CameraController.js
|-- GroupRaycaster.js
|-- ObjectsLoader.js
|-- WebGLExperience.js
  • data文件夹包含单独文件中的 javascript 对象以及所有信息
  • shaders文件夹包含单独文件中的所有项目自定义着色器
  • CameraController.js:处理所有相机移动和控制的类
  • GroupRaycaster.js:处理所有“交互式”对象光线投射的类
  • ObjectsLoader.js:加载所有场景对象的类
  • WebGLExperience.js:初始化渲染器、相机、场景、后处理并处理所有其他类的主类

当然,你可以自由地以不同的方式组织它。 例如,有些人喜欢为渲染器、场景和相机创建单独的类。

3.1 核心的概念代码摘录

那么让我们进入代码本身吧!

以下是一些文件实际外观的详细示例。

Obects.js :

import { customFragmentShader } from "../shaders/customShader";

const sceneObjects = [
 {
   subPath: "path/to/",
   gltf: "object1.gltf"
 },
 {
   subPath: "anotherPath/to/",
   gltf: "object2.gltf",
   fragmentShader: customFragmentShader,
   uniforms: {
     uTime: {
       value: 0,
     }
   }
 }
];


export default sceneObjects;

ObjectsLoader.js:

import { LoadingManager } from "three";

import { GLTFLoader } from "three/examples/jsm/loaders/GLTFLoader";
import { BasisTextureLoader } from "three/examples/jsm/loaders/BasisTextureLoader";

export default class ObjectsLoader {
 constructor({
   renderer, // our threejs renderer
   basePath = '/', // common base path for all your assets
   onLoading = () => {}, // onLoading callback
   onComplete = () => {} // onComplete callback
 }) {
   this.renderer = renderer;
   this.basePath = basePath;
   this.loadingManager = new LoadingManager();

   this.basisLoader = new BasisTextureLoader(this.loadingManager);
  
   // you can also host those files locally if you want
   this.basisLoader.setTranscoderPath("/node_modules/three/examples/js/libs/basis/");
   this.basisLoader.detectSupport(this.renderer);
   this.loadingManager.addHandler(/\.basis$/i, this.basisLoader);

   this.loader = new GLTFLoader(this.loadingManager);
   this.loader.setPath(this.basePath);

   this.onLoading = onLoading;
   this.onComplete = onComplete;

   this.objects = [];

   this.state = {
     objectsLoaded: 0,
     totalObjects: 0,
     isComplete: false,
   };


   this.loadingManager.onProgress = (url, itemsLoaded, itemsTotal) => {
     const percent = Math.ceil((itemsLoaded / itemsTotal) * 100);

     // loading callback
     this.onLoading && this.onLoading(percent);

     if(percent === 100 && !this.state.isComplete) {
       this.state.isComplete = true;
       this.isLoadingComplete();
     }
   };
   this.loadingManager.onError = (url) => {
     console.warn('>>> error while loading: ', url);
   };
 }

 loadObject({
    object,
    parent, // could be our main scene or a group
    onSuccess = () => {} // callback for each object loaded if needed
  }) {
   if(!object || !object.gltf) return;

   if('requestIdleCallback' in window) {
     window.requestIdleCallback(() => {
       this.startLoading({
         object,
         parent,
         onSuccess
       });
     });
   }
   else {
     this.startLoading({
       object,
       parent,
       onSuccess
     });
   }
 }

 startLoading({
    object,
    parent,
    onSuccess
  }) {
   this.state.totalObjects++;

   // if object has a subpath
   if(object.subPath) {
     this.loader.setPath(this.basePath + object.subPath);
   }

   this.loader.load(object.gltf, (gltf) => {

     const sceneObject = {
       gltf,
     };

     // ... do whatever you want with your gltf scene here
     // ... like using a ShaderMaterial if object.fragmentShader is defined for example!

     parent.add(gltf.scene);

     this.objects.push(sceneObject);

     onSuccess && onSuccess(sceneObject);

     // check if we've load everything
     this.state.objectsLoaded++;
     this.isLoadingComplete();

   }, (xhr) => {
   },(error) => {
     console.warn( 'An error happened', error );

     this.state.objectsLoaded++;
     this.isLoadingComplete();
   });
 }


 isLoadingComplete() {
   if(this.state.isComplete && this.state.objectsLoaded === this.state.totalObjects) {
     setTimeout(() => {
       this.onComplete && this.onComplete();
     }, 0);
   }
 }
}

WebGLExperience.js:

import {
 WebGLRenderer,
 Scene,
 sRGBEncoding,
 Group
} from "three";

import ObjectsLoader from "./ObjectsLoader";
import CameraController from "./CameraController";
import GroupRaycaster from "./GroupRaycaster";

import sceneObjects from "./data/objects";

/***
Project architecture example:
webgl
|-- data
|   |-- objects.js
|   |-- otherObjects.js
|-- shaders
|   |-- customShader.js
|   |-- anotherShader.js
|-- CameraController.js
|-- GroupRaycaster.js
|-- ObjectsLoader.js
|-- WebGLExperience.js
*/

export default class WebGLExperience {
 constructor({
   // add params here if needed
   container = document.body,
 }) {
   this.container = container;

   // update on resize
   this.width = window.innerWidth;
   this.height = window.innerHeight;

   this.initRenderer();
   this.initScene();
   this.initCamera();

   this.loadObjects();

   this.initRaycasting();
 }

 /*** EVENTS CALLBACKS ***/

 onLoading(callback) {
   if(callback) {
     this.onLoadingCallback = callback;
   }

   return this;
 }

 onComplete(callback) {
   if(callback) {
     this.onCompleteCallback = callback;
   }

   return this;
 }

 /*** THREEJS SETUP ***/

 initRenderer() {
   this.renderer = new WebGLRenderer({
     antialias: true,
     alpha: true,
   });

   // important when dealing with GLTFs!
   this.renderer.outputEncoding = sRGBEncoding;

   this.renderer.setSize( this.width, this.height );
   this.renderer.setClearColor( 0xffffff, 1 );

   this.renderer.outputEncoding = sRGBEncoding;

   // append the canvas
   this.container.appendChild( this.renderer.domElement );
 }

 initScene() {
   // scene
   this.scene = new Scene();
 }

 initCamera() {
   // creates the camera and handles the controls & movements
   this.cameraController = new CameraController({
     webgl: this,
   });

   this.camera = this.cameraController.camera;
 }


 /*** RAYCASTING ***/

 initRaycasting() {
   this.raycaster = new GroupRaycaster({
     camera: this.camera,
     width: this.width,
     height: this.height,
     onMouseEnteredObject: (object) => {
       // raycasted object mouse enter event
     },
     onMouseLeavedObject: (object) => {
       // raycasted object mouse leave event
     },
     onObjectClicked: (object) => {
       // raycasted object mouse click event
     }
   });
 }

 /*** LOAD OBJECTS ***/

 loadObjects() {
   this.objectsLoader = new ObjectsLoader({
     renderer: this.renderer,
     basePath: '/assets/', // whatever
     onLoading: (percent) => {
       console.log(percent);

       // callback
       this.onLoadingCallback && this.onLoadingCallback(percent);
     },
     onComplete: () => {
       // loading complete...
       console.log("loading complete!");

       // callback
       this.onCompleteCallback && this.onCompleteCallback();
     }
   });


   // create a new group where we'll add all our objects
   this.objectGroup = new Group();
   this.scene.add(this.objectGroup);

   // load the objects
   sceneObjects.forEach(object => {
     this.objectsLoader.loadObject({
       object,
       parent: this.objectGroup,
       onSuccess: (loadedObject) => {
         console.log(loadedObject);
       }
     });
   });
 }

 /*** RENDERING ***/

 // ...other methods to handle rendering, interactions, etc.
}

3.2 与 Nextjs / React 集成

由于该项目使用 Nextjs,我们需要在 React 组件内实例化我们的 WebGLExperience 类。

我们只需创建一个 WebGLCanvas 组件并将其放在路由器外部,以便它始终位于 DOM 中。

WebGLCanvas.jsx:

import React, {useRef, useState, useEffect} from 'react';
import WebGLExperience from '../../webgl/WebGLExperience';

import styles from './WebGLCanvas.module.scss';

export default function WebGLCanvas() {
 const container = useRef();
 const [ webglXP, setWebglXP ] = useState();

 // set up webgl context on init
 useEffect(() => {
   const webgl = new WebGLExperience({
     container: container.current,
   });

   setWebglXP(webgl);
 }, []);


 // now we can watch webglXP inside a useEffect hook
 // and do what we want with it
 // (watch for events callbacks for example...)
 useEffect(() => {
   if(webglXP) {
     webglXP
       .onLoading((percent) => {
         console.log('loading', percent);
       })
       .onComplete(() => {
         // do what you want (probably dispatch a context event)
       });
   }
 }, [webglXP]);

 return (
   <div className="WebGLCanvas" ref={container} />
 );
};

4、自定义着色器

显然我必须为这个网站从头开始编写一些自定义着色器。
以下是最有趣的一些细分。

4.1 着色器块

如果你仔细查看上面的示例代码,会发现我允许每个对象在需要时使用自己的自定义着色器。

事实上,场景中的每个网格体都使用 ShaderMaterial,因为当你单击建筑物时,灰度滤镜将应用于所有其他场景网格体:
在这里插入图片描述

应用了灰度滤镜的位置页面屏幕截图

这种效果的实现要归功于这段超级简单的 glsl 代码:

const grayscaleChunk = `
  vec4 textureBW = vec4(1.0);
  textureBW.rgb = vec3(gl_FragColor.r * 0.3 + gl_FragColor.g * 0.59 + gl_FragColor.b * 0.11);
  gl_FragColor = mix(gl_FragColor, textureBW, uGrayscale);
`;

由于所有对象都必须遵守此行为,因此我将其实现为“着色器块”,就像 Three.js 最初在内部构建自己的着色器的方式一样。

例如,使用的最基本场景的网格片段着色器如下所示:

varying vec2 vUv;

uniform sampler2D map;
uniform float uGrayscale;

void main() {
 gl_FragColor = texture2D(map, vUv);

 #include <grayscale_fragment>
}

然后我们只获取材质的 onBeforeCompile 方法的一部分:

material.onBeforeCompile = shader => {
 shader.fragmentShader = shader.fragmentShader.replace(
   "#include <grayscale_fragment>",
   grayscaleChunk
 );
};

这样,如果我必须调整灰度效果,我只需修改一个文件,它就会更新我的所有片段着色器。

4.2 云

正如我上面提到的,我们决定不在场景中放置任何真实的灯光。 但由于云层正在(缓慢)移动,因此需要对其应用某种动态闪电。

为此,我需要做的第一件事是将顶点世界位置和法线传递给片段着色器:

varying vec3 vNormal;
varying vec3 vWorldPos;

void main() {
 vec4 mvPosition = modelViewMatrix * vec4(position, 1.0);
 gl_Position = projectionMatrix * mvPosition;

 vWorldPos = (modelMatrix * vec4(position, 1.0)).xyz;
 vNormal = normal;
}

然后在片段着色器中,我使用它们根据一些uniforms计算漫反射闪电:

varying vec3 vNormal;
varying vec3 vWorldPos;

uniform float uGrayscale;

uniform vec3 uCloudColor; // emissive color
uniform float uRoughness; // material roughness
uniform vec3 uLightColor; // light color
uniform float uAmbientStrength; // ambient light strength
uniform vec3 uLightPos; // light world space position

// get diffusion based on material's roughness
// see https://learnopengl.com/PBR/Theory
float getRoughnessDiff(float diff) {
 float diff2 = diff * diff;

 float r2 = uRoughness * uRoughness;
 float r4 = r2 * r2;

 float denom = (diff2 * (r4 - 1.0) + 1.0);
 denom = 3.141592 * denom * denom;

 return r4 / denom;
}

void main() {
 // ambient light
 vec3 ambient = uAmbientStrength * uLightColor;

 // get light diffusion
 float diff = max(dot(normalize((uLightPos - vWorldPos)), vNormal), 0.0);
 // apply roughness
 float roughnessDiff = getRoughnessDiff(diff);

 vec3 diffuse = roughnessDiff * uLightColor;

 vec3 result = (ambient + diffuse) * uCloudColor;

 gl_FragColor = vec4(result, 1.0);

 #include <grayscale_fragment>
}

这是一种从头开始应用基本闪电阴影的廉价方法,而且结果足够令人信服。

4.3 水中倒影

我花更多时间写的片段着色器无疑是波光粼粼的水。

起初,我愿意采用与 Bruno Simon 在 Madbox 网站上所做的类似的方法,但他使用额外的网格和一组自定义 UV 来实现。

由于 Nico 已经忙于所有建模工作,我决定尝试另一种方法。 我为自己创建了一个额外的纹理来计算波的方向:

在这里插入图片描述

左:水纹理,右:水流方向纹理

这里,水流方向被编码在绿色通道中:50% 的绿色表示水流直行,60% 的绿色表示水稍微向左流动,40% 表示水稍微向右流动,等等 在…

为了创建波浪,我使用了带有阈值的 2D perlin 噪声。 我使用了其他一些 2D 噪声来确定水会发光的区域,使它们向相反的方向移动,瞧!

varying vec2 vUv;

uniform sampler2D map;
uniform sampler2D tFlow;
uniform float uGrayscale;
uniform float uTime;

uniform vec2 uFrequency;
uniform vec2 uNaturalFrequency;
uniform vec2 uLightFrequency;
uniform float uSpeed;
uniform float uLightSpeed;
uniform float uThreshold;
uniform float uWaveOpacity;

// see https://gist.github.com/patriciogonzalezvivo/670c22f3966e662d2f83#classic-perlin-noise
// for cnoise function

vec2 rotateVec2ByAngle(float angle, vec2 vec) {
  return vec2(
    vec.x * cos(angle) - vec.y * sin(angle),
    vec.x * sin(angle) + vec.y * cos(angle)
  );
}

void main() {
  vec4 flow = texture2D(tFlow, vUv);
  float sideStrength = flow.g * 2.0 - 1.0;

  vec2 wavesUv = rotateVec2ByAngle(sideStrength * PI, vUv) * uFrequency;

  float mainFlow = uTime * uSpeed * (1.0 - sideStrength);
  float sideFlow = uTime * sideStrength * uSpeed;

  wavesUv.x -= sideFlow;
  wavesUv.y += mainFlow;

  // make light areas travel towards the user
  float waveLightStrength = cnoise(wavesUv);

  // make small waves with noise
  vec2 naturalNoiseUv = rotateVec2ByAngle(sideStrength * PI, vUv * uNaturalFrequency);
  float naturalStrength = cnoise(naturalNoiseUv);

  // apply a threshold to get small waves moving towards the user
  float waveStrength = step(uThreshold, clamp(waveLightStrength - naturalStrength, 0.0, 1.0));

  // a light mowing backward to improve overall effect
  float light = cnoise(vUv * uLightFrequency + vec2(uTime * uLightSpeed));

  // get our final waves colors
  vec4 color = vec4(1.0);
  color.rgb = mix(vec3(0.0), vec3(1.0), 1.0 - step(waveStrength, 0.01));

  // exagerate effect
  float increasedShadows = pow(abs(light), 1.75);
  color *= uWaveOpacity * increasedShadows;

  // mix with original texture
  vec4 text = texture2D(map, vUv);

  gl_FragColor = text + color;

  #include <grayscale_fragment>
}

如果你想测试一下,这里有一个 Shadertoy 上的演示。

为了帮助我调试这个问题,我使用了 GUI 来实时调整所有值并找到最有效的值(当然,我已经使用该 GUI 来帮助我调试很多其他事情) 。

在这里插入图片描述

4.4 后期处理

最后有一个使用 Threejs 内置 ShaderPass 类应用的后处理通道。 它处理出现的动画,在某个位置聚焦时在相机移动上添加一点鱼眼,并负责小级别校正(亮度、对比度、饱和度和曝光)。

在这里插入图片描述

在放大/缩小动画期间应用轻微的后处理变形效果

PostFXShader.js:

const PostFXShader = {
  uniforms: {

    'tDiffuse': { value: null },
    'deformationStrength': { value: 0 },
    'showScene': { value: 0 },

    // color manipulations
    'brightness': { value: 0 },
    'contrast': { value: 0.15 },
    'saturation': { value: 0.1 },
    'exposure': { value: 0 },

  },

  vertexShader: /* glsl */`
    varying vec2 vUv;
    void main() {
      vUv = uv;
      gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );
    }`,

  fragmentShader: `
    varying vec2 vUv;
    uniform sampler2D tDiffuse;
    uniform float showScene;
    uniform float deformationStrength;
    
    uniform float brightness;
    uniform float contrast;
    uniform float saturation;
    uniform float exposure;
    
    
    vec3 adjustBrightness(vec3 color, float value) {
      return color + value;
    }
    vec3 adjustContrast(vec3 color, float value) {
      return 0.5 + (1.0 + value) * (color - 0.5);
    }
    vec3 adjustExposure(vec3 color, float value) {
      return color * (1.0 + value);
    }
    vec3 adjustSaturation(vec3 color, float value) {
      // https://www.w3.org/TR/WCAG21/#dfn-relative-luminance
      const vec3 luminosityFactor = vec3(0.2126, 0.7152, 0.0722);
      vec3 grayscale = vec3(dot(color, luminosityFactor));
      return mix(grayscale, color, 1.0 + value);
    }
    
    
    void main() {
      vec2 texCoords = vUv;
      vec2 normalizedCoords = texCoords * 2.0 - 1.0;
      float distanceToCenter = distance(normalizedCoords, vec2(0.0));
      vec2 distortedCoords = normalizedCoords * (1.0 - distanceToCenter * deformationStrength);
		  
      vec2 offset = normalizedCoords * sin(distanceToCenter * 3.0 - showScene * 3.0) * (1.0 - showScene) * 0.1;
		  
      texCoords = (distortedCoords + 1.0) * 0.5 + offset;
		
      vec4 texture = texture2D(tDiffuse, texCoords);
		  
      float showEffect = clamp(showScene - length(offset) * 10.0 / sqrt(2.0), 0.0, 1.0);
		  
      vec4 grayscale = vec4(1.0);
      grayscale.rgb = vec3(texture.r * 0.3 + texture.g * 0.59 + texture.b * 0.11);
      
      texture.rgb = mix(grayscale.rgb, texture.rgb, showEffect);
		  
      texture.a = showEffect * 0.9 + 0.1;
      texture.rgb *= texture.a;
		  
      texture.rgb = adjustBrightness(texture.rgb, brightness);
      texture.rgb = adjustContrast(texture.rgb, contrast);
      texture.rgb = adjustExposure(texture.rgb, exposure);
      texture.rgb = adjustSaturation(texture.rgb, saturation);
		  
      gl_FragColor = texture;
    }
  `
};

export { PostFXShader };

在某些时候,我们还尝试添加散景通道,但它对性能要求太高,因此我们很快就放弃了它。

5、使用 Spector 进行调试

你始终可以通过安装spector.js扩展并检查WebGL上下文来深入查看使用的所有着色器。

如果你从未听说过,spector.js 适用于每个 WebGL 网站。 如果想检查一些 WebGL 效果是如何实现的,它总是超级方便!
在这里插入图片描述

使用spector.js 调试片段着色器

6、性能优化

我使用了一些技巧来优化体验性能。 以下是最重要的两个:

首先,这应该成为一种习惯:仅在需要时渲染场景。

这可能听起来很愚蠢,但它仍然经常被低估。 如果你的场景被覆盖层、页面或其他任何东西隐藏,就不要绘制它!

renderScene() {
 if(this.state.shouldRender) this.animate();
}

我使用的另一个技巧是根据用户 GPU 和屏幕尺寸来调整场景的像素比。

这个想法是首先使用 detector-gpu 检测用户的 GPU。 一旦我们获得了 GPU 估计的 fps,我们就会使用实际屏幕分辨率来计算实际条件下该 fps 测量值的增强估计。 然后,我们可以根据每次调整大小时的这些数字来调整渲染器像素比:

setGPUTier() {
 // GPU test
 (async () => {
   this.gpuTier = await getGPUTier({
     glContext: this.renderer.getContext(),
   });

   this.setImprovedGPUTier();
 })();
}

// called on resize as well
setImprovedGPUTier() {
 const baseResolution = 1920 * 1080;

 this.gpuTier.improvedTier = {
   fps: this.gpuTier.fps * baseResolution / (this.width * this.height)
 };

 this.gpuTier.improvedTier.tier = this.gpuTier.improvedTier.fps >= 60 ? 3 :
   this.gpuTier.improvedTier.fps >= 30 ? 2 :
     this.gpuTier.improvedTier.fps >= 15 ? 1 : 0;

 this.setScenePixelRatio();
}

另一种常见的方法是持续监控给定时间段内的平均 FPS,并根据结果调整像素比。

其他优化包括使用或不使用多重采样渲染目标,具体取决于 GPU 和 WebGL2 支持(使用 FXAA 通道作为后备)、使用鼠标事件发射器、触摸和调整大小事件、使用 gsap 股票代码作为应用程序的唯一 requestAnimationFrame 循环等 。

7、结束语

总而言之,我们在构建家乡的交互式地图时度过了一段愉快的时光。

正如我们所见,打造像这样的沉浸式 WebGL 体验(需要实时渲染很多内容)并不困难。 但它确实需要一些组织和一个包含多个文件的干净代码库,可以轻松调试、添加或删除功能。

通过该架构,还可以非常轻松地添加或删除场景对象(因为这只是编辑 Javascript 对象的问题),从而在需要时可以方便地进行进一步的站点更新。


原文链接:WebGL旅游网站案例研究 — BimAnt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80938.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构基础

将节点构建成树 数据的结构逻辑结构集合线性结构树形结构图状结构 存储结构合理的创建标题&#xff0c;有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants 创建一个自定义列表如…

vue2.0/vue3.0学习笔记——2022.08.16

vue2&#xff08;查漏补缺&#xff09; 一、vue基础 内置指令&#xff08;查漏补缺&#xff09; 1、v-text 更新元素的textContent 2、v-html 更新元素的innerHtml 3、v-cloak 防止闪现&#xff0c;与css配合: [v-cloak] {dispaly: none} 4、v-once 在初次动态渲染厚&#x…

wxPython使用matplotlib绘制动态曲线

1.思路 我们创建了一个继承自wx.Frame的自定义窗口类MyFrame。在MyFrame的构造函数中&#xff0c;我们创建了一个matplotlib的Figure对象和一个FigureCanvas对象&#xff0c;用于在窗口中显示绘图结果。然后&#xff0c;我们使用numpy生成了一个包含100个点的x轴坐标数组self.…

Java IO流(二)IO模型(BIO|NIO|AIO)

概述 Java IO模型同步阻塞IO&#xff08;BIO&#xff09;、同步非阻塞IO&#xff08;NIO&#xff09;、异步非阻塞IO&#xff08;AIO/NIO2&#xff09;,Java中的BIO、NIO和AIO理解为是Java语言对操作系统的各种IO模型的封装 IO模型 BIO(Blocking I/O) 概述 BIO是一种同步并阻…

Linux实用运维脚本分享

Linux实用运维脚本分享&#x1f343; MySQL备份 目录备份 PING查询 磁盘IO检查 性能相关 进程相关 javadump.sh 常用工具安装 常用lib库安装 系统检查脚本 sed进阶 MySQL备份 #!/bin/bashset -eUSER"backup" PASSWORD"backup" # 数据库数据目录…

C++ Builder 关于TRichEdit的字符颜色标记处理

//积累经验每一天&#xff0c;以后忘记好搜索 void __fastcall TForm2::btn3Click(TObject *Sender) { //初始化验证 mmo->SelStart0; mmo->SelLengthmmo->Text.Length(); mmo->SelAttributes->ColorclBlack; String CGhEd…

如何使用Kali Linux进行渗透测试?

1. 渗透测试简介 渗透测试是通过模拟恶意攻击&#xff0c;评估系统、应用或网络的安全性的过程。Kali Linux为渗透测试人员提供了丰富的工具和资源&#xff0c;用于发现漏洞、弱点和安全风险。 2. 使用Kali Linux进行渗透测试的步骤 以下是使用Kali Linux进行渗透测试的基本…

visual studio 2017 运行的程序关闭后不能再运行?(visual studio建立项目之后退出,如何再次完整打开项目?)

在你储存项目的文件夹里面应该是这样的 里面.vcxproj后缀名的就是原来创建的项目&#xff0c;直接打开这个头文件源文件就会一起出来了&#xff01; 真的管用&#xff0c;亲测有效。

干翻Dubbo系列第十二篇:Dubbo协议介绍

文章目录 文章说明 一&#xff1a;Dubbo协议 1&#xff1a;Dubbo协议简介 2&#xff1a;Dubbo协议优点 3&#xff1a;Dubbo协议帧的组成 (一)&#xff1a;幻数 (二)&#xff1a;2Way (三)&#xff1a;event (四)&#xff1a;Serilization ID (五)&#xff1a;status …

【C++进阶】继承、多态的详解(多态篇)

【C进阶】继承、多态的详解&#xff08;多态篇&#xff09; 目录 【C进阶】继承、多态的详解&#xff08;多态篇&#xff09;多态的概念多态的定义及实现多态的构成条件&#xff08;重点&#xff09;虚函数虚函数的重写&#xff08;覆盖、一种接口继承&#xff09;C11 override…

常见指令以及权限理解

常见指令以及权限理解 命令格式&#xff1a; command [-options] parameter1 parameter1 命令 选项 参数1 参数2 1.command为命令名称&#xff0c;例如变化目录的cd等 2.中括号[ ]实际在命令中是不存在的&#xff0c;这个中括号代表可选&#xff0c;通常选项前面会添加一个符号…

K8S deployment挂载

挂载到emptyDir 挂载在如下目录&#xff0c;此目录是pod所在的node节点主机的目录&#xff0c;此目录下的data即对应容器里的/usr/share/nginx/html&#xff0c;实现目录挂载&#xff1b;图1红框里的号对应docker 的name中的编号&#xff0c;如下俩个图 apiVersion: apps/v1 k…

Sentinel规则持久化

首先 Sentinel 控制台通过 API 将规则推送至客户端并更新到内存中&#xff0c;接着注册的写数据源会将新的规则保存到本地的文件中。 示例代码&#xff1a; 1.编写处理类 //规则持久化 public class FilePersistence implements InitFunc {Value("spring.application:n…

Qt应用开发(基础篇)——高级纯文本窗口 QPlainTextEdit

一、前言 QPlainTextEdit类继承于QAbstractScrollArea&#xff0c;QAbstractScrollArea继承于QFrame&#xff0c;是Qt用来显示和编辑纯文本的窗口。 滚屏区域基类https://blog.csdn.net/u014491932/article/details/132245486?spm1001.2014.3001.5501框架类QFramehttps://blo…

服务器数据库中了360后缀勒索病毒怎么办?360后缀勒索病毒的加密形式

随着信息技术的发展&#xff0c;企业的计算机服务器数据库变得越来越重要。然而&#xff0c;在数字时代&#xff0c;网络上的威胁也日益增多。近期&#xff0c;我们收到很多企业的求助&#xff0c;企业的计算机服务器遭到了360后缀勒索病毒的攻击&#xff0c;导致服务器内的所有…

【计算机视觉】相机基本知识(还在更新)

1.面阵工业相机与线阵工业相机 1.1 基本概念区别 面阵相机则主要采用的连续的、面状扫描光线来实现产品的检测&#xff1b; 线阵相机即利用单束扫描光来进行物体扫描的工作的。 1.2 优缺点 &#xff08;1&#xff09;面阵CCD工业相机&#xff1a; 优点&#xff1a;应用面…

Maven - 统一构建规范:Maven 插件管理最佳实践

文章目录 Available Plugins开源项目中的使用插件介绍maven-jar-pluginmaven-assembly-pluginmaven-shade-pluginShade 插件 - 标签artifactSetrelocationsfilters 完整配置 Available Plugins https://maven.apache.org/plugins/index.html Maven 是一个开源的软件构建工具&…

图数据库_Neo4j和SpringBoot整合使用_创建节点_删除节点_创建关系_使用CQL操作图谱---Neo4j图数据库工作笔记0009

首先需要引入依赖 springboot提供了一个spring data neo4j来操作 neo4j 可以看到它的架构 这个是下载下来的jar包来看看 有很多cypher对吧 可以看到就是通过封装的驱动来操作graph database 然后开始弄一下 首先添加依赖

核能的发展与应用

目录 1.核能的概念 2.核能的实现原理 3.核能的利与弊 4.核能未来的发展趋势 1.核能的概念 核能是指利用核反应过程中释放出的能量来产生电力或其他形式能量的能源形式。核能主要通过核裂变和核聚变两种方式产生。 1. 核裂变&#xff1a;核裂变是指重核&#xff08;通常是铀、…

ElementUI 树形表格的使用以及表单嵌套树形表格的校验问题等汇总

目录 一、树形表格如何添加序号体现层级关系 二、树形表格展开收缩图标位置放置&#xff0c;设置指定列 三、表单嵌套树形表格的校验问题以及如何给校验rules传参 普通表格绑定如下&#xff1a;这种方法只能校验表格的第一层&#xff0c;树形需要递归设置子级节点prop。 树…