Milvus 核心设计(5)--- scalar indexwork mechanism

目录

背景

Scalar index 简介

属性过滤

扫描数据段

相似性搜索

返回结果

举例说明

1. 属性过滤

2. 扫描数据段

3. 相似性搜索

实际应用中的考虑

Scalar Index 方式

Auto indexing 

Inverted indexing


背景

继续Milvus的很细设计,前面主要阐述了Milvus 在 vector simalairity 上的处理策略及index 方式。今天主要讲下scalar index。应该说对于所有的 db 实现,scalar index 都是需要的,无论是否是 关系型数据库,还是是否采用 k-v 存储等模式,有的东西是触类旁通的。Milvus 在处理scalar index 时,并不是孤立处理,而是结合了 bitset 提前过滤 + vector similarity 共同应对user  query 提出的挑战。下面进入正题。

Scalar index 简介

向量相似性搜索过程中,Milvus 使用了属性过滤条件(expr)来扫描每个数据段(segment),并将过滤结果(bitset,一种位集合,用于高效表示哪些元素满足条件)与查询向量(data)一起应用于相似性搜索中。这种方式可以极大地提高搜索效率,因为它允许Milvus在执行耗时的相似性计算之前,先通过简单的属性过滤快速排除掉大量不满足条件的数据点。

具体来说,过程如下:

属性过滤

用户定义了一个或多个属性过滤条件(expr),这些条件用于筛选数据集中满足特定属性要求的向量。这些条件可以基于向量的元数据(如时间戳、地理位置、分类标签等)来定义。

扫描数据段

Milvus遍历或索引每个数据段,应用这些属性过滤条件。对于每个数据段,它会生成一个bitset,这个bitset中的每一位代表数据段中对应位置的向量是否满足过滤条件。

相似性搜索

在得到过滤后的bitset后,Milvus只针对那些标记为“满足条件”的向量进行相似性搜索。这意味着它不再需要计算所有向量的相似性,而只需计算那些经过初步筛选、更有可能与查询向量相似的向量的相似性。


返回结果

最后,Milvus根据相似性得分对满足条件的向量进行排序,并返回最相似的向量及其相关信息(如ID、相似度分数等)给用户。

这种结合属性过滤和相似性搜索的方法,使得Milvus在处理大规模向量数据集时,能够更加高效和准确地响应用户的查询需求。它特别适用于那些既需要基于内容的相似性搜索,又需要基于属性快速筛选的场景,如推荐系统、图像检索、文档聚类等领域。

这里有一点要说明,你使用milvus,基本决定了你的 collection 世界中,一定是 vector + scalar 共存的case,原因很简单,如果仅有scalar,我相信你使用 mysql,sqlserver,甚至oracle 足以,小的应用你甚至使用sqlite估计也行,因为你的 sql  query 足以胜任user 各种需求。你之所以选择向量数据库,肯定是要么有LLM的vector 需求,要么有pic,audio甚至video 的需求。还是那句话,使用场景决定了product 的选择。所以你的collection 多半可能是  一个+多个 vector embeddding + 多个 attibute 的vector 说明。

举例说明

假设我们有一个电商平台,该平台使用Milvus来存储商品的图像特征向量,并希望为用户提供基于图像相似性的商品推荐功能。同时,商品还具有一些属性信息,如价格、品牌、类别等。

1. 属性过滤

用户查询:用户希望找到一款与某张图片相似,但价格不超过5000元,且品牌为“Huawei”的商品。

属性过滤条件

  • 价格 <= 5000
  • 品牌 = "Huawei"

在Milvus中,这些属性信息会与图像特征向量一起存储,但它们是分开处理的。当用户发起查询时,Milvus首先会应用这些属性过滤条件来筛选出满足条件的商品。

2. 扫描数据段

数据段扫描

  • Milvus会将存储的商品数据分为多个数据段(segment),每个数据段包含一部分商品的特征向量和属性信息。
  • 当属性过滤条件被应用时,Milvus会遍历或索引这些数据段,检查每个商品是否满足过滤条件。
  • 对于满足条件的商品,Milvus会生成一个bitset,其中每个位对应一个商品,满足条件的商品对应的位被设置为1,不满足的则被设置为0。

3. 相似性搜索

相似性搜索

  • 在得到过滤后的bitset后,Milvus只针对那些标记为“满足条件”的商品特征向量进行相似性搜索。
  • 用户提供的查询图片首先被转换为特征向量。
  • Milvus使用适当的相似性度量(如余弦相似度)来计算查询向量与满足条件的商品特征向量之间的相似性。
  • 根据相似性得分,Milvus对商品进行排序,并返回最相似的几个商品给用户。

实际应用中的考虑

  • 性能优化:Milvus通过高效的索引结构和算法来加速数据段的扫描和相似性搜索过程,确保即使在处理大规模数据集时也能提供快速响应。
  • 多模态支持:Milvus不仅支持图像特征向量的存储和检索,还支持文本、音频等多种模态的数据,为跨模态检索提供了可能。
  • 可扩展性:Milvus支持分布式部署,可以随着数据量的增长而水平扩展,以满足更高并发和更大存储容量的需求。

Scalar Index 方式

Auto indexing 

你不用对你的scalar attribute 做任何辅助说明,Milvus 使用 auto indexing 的方式完成Scalar Indexing 的索引。

实际上你看了Milvus 的源码之后,你会发现,实际上 Auto indexing 就是 底层用的 inverted indexing。这里可能milvus 为了扩展,将inverted indexing 作为了 default 的 scalar indexing 来使用。

所以本质上来说要看下 Inverted indexing。

Inverted indexing

倒排索引,如果你曾经是比较资深的programmmer,你应该不会陌生。我那时候还没有ElasticSearch,用的是Lucene,后来有了ElasticSearch 和 Solr,但是万变不离其宗,其核心还是倒排索引。说直白点就是把一个句子拆分为词组的 tomkenizer 并 标识这些词在哪些句子中出现或是标识出现的概率。Milvus的 inverted indexing 出自一个开源库:Tantivy。应该说 Tantivy 的实现并不是ElasticSerach 或是 Solr,但是其思想有些类似,有兴趣的可以去看下源码。github 地址:

Tantivy Github 源码地址

再次说明了,成功是站在巨人的肩上,其实Milvus 用了不少其他中间件来保证自己的功能特性,前面介绍过的就有:etcd,mysql,rockMQ,pluster etc。现在又看到了 Tantivy。你可能会问为什么Milvus 不使用 ElasticSearch或Solr,那肯定是那啥License等问题,但从技术的角度来说,Tantivy也足够优秀。或许有一天 Tantivy 的知名度会超过 ElasticSearch 也不一定。

我们看个例子:

这就是倒排索引,只不过不同人,不同版本实现时,倒排信息的精度有差别,这里是focus 在句子层面。不过对于 Milvus的使用,足以。

在单个查询,比如上面的例子,品牌=’huawei‘,那根据倒排索引,直接锁定包含’huawei‘品牌attribute的 document 或 segment。

在区间查询,比如还是上面的例子,价格<5000, 那还是根据倒排索引,直接锁定 价格 attribute的document 或segment。

或许区间的例子还不够透彻,因为range 的是数据。你查找的品牌获取不止一种,如果 brand in ['huawei', 'apple'] 首先会经过类似alpha的字母排序,之后通过倒排索引查询,会比暴力查询效率高很多。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/801789.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Java面试八股之Redis哨兵机制

Redis哨兵机制 Redis Sentinel&#xff08;哨兵&#xff09;模式是一种高可用解决方案&#xff0c;用于监控和自动故障转移Redis主从集群。以下是对哨兵模式详细过程的描述&#xff1a; 1. 初始化与配置 部署哨兵节点&#xff1a;在不同的服务器上部署一个或多个Redis Sentin…

达梦数据库的系统视图v$dict_cache_item

达梦数据库的系统视图v$dict_cache_item 在达梦数据库&#xff08;DM Database&#xff09;中&#xff0c;V$DICT_CACHE_ITEM 是一个系统视图&#xff0c;用于显示字典缓存&#xff08;Dictionary Cache&#xff09;中的项信息。字典缓存是数据库中的一个重要组件&#xff0c;…

玩转HarmonyOS NEXT之IM应用首页布局

本文从目前流行的垂类市场中&#xff0c;选择即时通讯应用作为典型案例详细介绍HarmonyOS NEXT的各类布局在实际开发中的综合应用。即时通讯应用的核心功能为用户交互&#xff0c;主要包含对话聊天、通讯录&#xff0c;社交圈等交互功能。 应用首页 创建一个包含一列的栅格布…

设计模式总结(设计模式的原则及分类)

1.什么是设计模式&#xff1f; 设计模式(Design pattern)代表了最佳的实践&#xff0c;通常被有经验的面向对象的软件开发人员所采用。设计模式是软件开发人员在软件开发过程中面临的一般问题的解决方案。这些解决方案是众多软件开发人员经过相当长的一段时间的试验和错误总结…

数据结构(4.0)——串的定义和基本操作

串的定义(逻辑结构) 串&#xff0c;即字符串(String)是由零个或多个字符组成的有序数列。 一般记为Sa1a2....an(n>0) 其中&#xff0c;S是串名&#xff0c;单引号括起来的字符序列是串的值;ai可以是字母、数字或其他字符&#xff1b;串中字符的个数n称为串的长度。n0时的…

Proxyman for Mac v5.6.1 抓包调试工具

Mac分享吧 文章目录 效果一、下载软件二、功能三、开始安装1、双击运行软件&#xff0c;将其从左侧拖入右侧文件夹中&#xff0c;等待安装完毕2、应用程序显示软件图标&#xff0c;表示安装成功 四、运行测试1、打开软件 安装完成&#xff01;&#xff01;&#xff01; 效果 一…

SpringBoot介绍以及第一个SpringBoot程序

T04BF &#x1f44b;专栏: 算法|JAVA|MySQL|C语言 &#x1faf5; 今天你敲代码了吗 文章目录 2.第一个SpringBoot程序2.1Spring Boot介绍2.2使用idea创建Spring Boot程序2.2.1 社区版idea2.2.2专业版idea2.2.3创建SpringBoot项目2.2.4项目代码和目录介绍目录介绍pom文件 2.3Web…

leetcode 周赛(406)全AC留念

纪念第一次 leetcode 周赛&#xff08;406&#xff09;全AC 1.(100352. 交换后字典序最小的字符串) 题目描述&#xff1a; 给你一个仅由数字组成的字符串 s&#xff0c;在最多交换一次 相邻 且具有相同 奇偶性 的数字后&#xff0c;返回可以得到的 字典序最小的字符串 。 如…

量化发展历史简述,QMT/PTrade+恒生UFT、LDP极速柜台适用哪些情形?

量化发展简述 1.2004年萌发阶段&#xff1a;策略局限在量化择时&#xff0c;量化选股等&#xff1b; 光大保德信量化核 心基金 上投摩根阿尔法基 金 金融危机&#xff0c;海归引入。 2.2010量化元年&#xff1a;中低频交易为主&#xff0c;主要依靠套利、对冲、多因子策略等…

Nginx入门到精通一(基本概念介绍)

下面内容整理自bilibili-尚硅谷-Nginx青铜到王者视频教程 Nginx相关文章 Nginx入门到精通二&#xff08;安装配置&#xff09;-CSDN博客 Nginx入门到精通三&#xff08;Nginx实例1&#xff1a;反向代理&#xff09;-CSDN博客 Nginx入门到精通四&#xff08;反向代理2&…

linux服务器登录mysql无异常,本地登录报1045 -Access denied for user

1、本地登录linux服务器报“1045 -Access denied for user &#xff08;用户访问被拒绝&#xff09;” 造成上面链接问题的原因是&#xff0c;用户权限不足&#xff0c;需要在linux服务器上执行如下2条命令即可 CREATE USER root127.0.0.1 IDENTIFIED BY root123; GRANT ALL P…

蔚来Java实习一面总结

此文用于个人面经总结&#xff0c;答案可能存在出入&#xff0c;望理性食用~~ 1. 分析时间复杂度的工具 2. 数组和链表的区别 数组&#xff1a;线性表&#xff0c;存储空间连续&#xff0c;可以通过下标直接访问元素&#xff0c;查找时间复杂度为O(1)&#xff0c;插入的时间…

前端Vue组件化实践:打造自定义等宽tabs标签组件

在前端开发的世界里&#xff0c;随着业务复杂度的提升和需求的多样化&#xff0c;传统的整体式开发方式已经难以满足快速迭代和高效维护的需求。组件化开发作为一种重要的解决方案&#xff0c;正逐渐受到广大开发者的青睐。本文将结合Vue框架&#xff0c;探讨如何通过组件化开发…

Linux 网络配置与连接

一、网络配置 1.1 ifconfig 网卡配置查询 ifconfig #查看所有启动的网络接口信息 ifconfig 指定的网卡 #查看指定网络接口信息 1.2 修改网络配置文件 vim /etc/sysconfig/network-scripts/ifcfg-ens33 #ens33网络配置文…

数据驱动未来,Xinstall全渠道统计方案引领行业变革

在这个信息爆炸的时代&#xff0c;App市场的竞争日益激烈。对于每一个开发者或营销人员来说&#xff0c;掌握准确、全面的数据分析能力&#xff0c;是提升产品竞争力、优化营销策略的关键。然而&#xff0c;面对投放渠道的分散、数据打通的困难以及作弊流量的困扰&#xff0c;许…

CentOS7.X系统部署Zabbix6.0版本(可跟做)

文章目录 一、部署环境说明二、基本环境部署步骤1、环境初始化操作2、部署并配置Nginx3、部署并配置PHP4、测试NginxPHP环境5、部署并配置MariaDB 三、Zabbix-Server部署步骤1、编译安装Zabbix-Server2、导入Zabbix初始化库3、配置Zabbix前端UI4、启动Zabbix-Server5、WEB页面配…

大厂必争之地!AI搜索产品万字长文分析

多年以前&#xff0c;百度、谷歌等就在开始做智能搜索&#xff0c;但彼时的智能搜索只是对搜索结果的简单整理归纳&#xff0c;效果并不如人意。当前AI爆火&#xff0c;在AI的加持下&#xff0c;搜索会不会更强大一些呢&#xff1f;其实并不是&#xff0c;至少当前AI搜索的使用…

【Linux杂货铺】期末总结篇2:文件操作命令 | 目录操作命令

&#x1f308;个人主页&#xff1a;聆风吟_ &#x1f525;系列专栏&#xff1a;Linux实践室、网络奇遇记 &#x1f516;少年有梦不应止于心动&#xff0c;更要付诸行动。 文章目录 第四章4.1 ⛳️Linux与windows的文件系统差别4.2 ⛳️目录相关的常用术语4.3 ⛳️Linux文件类型…

环境配置|PyCharm——Pycharm本地项目打包上传到Github仓库的操作步骤

一、Pycharm端的设置操作 通过Ctrl+Alt+S快捷组合键的方式,打开设置,导航到版本控制一栏中的Git,在Git可执行文件路径中,输入Git.exe。 按照下图顺序,依次点击,完成测试。输出如图标④的结果,即可完成测试。 输出下图结果,配置Git成功,如本地未安装Git,需自行安装。

机器学习 | 深入理解激活函数

什么是激活函数&#xff1f; 在人工神经网络中&#xff0c;节点的激活函数定义了该节点或神经元对于给定输入或一组输入的输出。然后&#xff0c;将此输出用作下一个节点的输入&#xff0c;依此类推&#xff0c;直到找到原始问题的所需解决方案。 它将结果值映射到所需的范围…