深度剖析数据在内存中的存储

目录

一、数据类型介绍

类型的基本归类

1.整形家族

2.浮点数家族

3.构造类型 (自定义类型)

4.指针类型

5.空类型

二、整形在内存中的存储

1.原码、反码、补码

1.1原码

1.2反码

1.3补码

1.4计算规则

2 .大小端介绍

三、浮点型在内存中的存储

1.一个例子

 2.浮点数存储规则


  • 🎈个人主页:库库的里昂
  •  🎐CSDN新晋作者
  •  🎉欢迎 👍点赞✍评论⭐收藏
  • ✨收录专栏:C语言进阶
  • ✨其他专栏:代码小游戏、C语言初阶、C语言每日一练
  • 🤝希望作者的文章能对你有所帮助,有不足的地方请在评论区留言指正,大家一起学习交流!🤗

【前言】

我们都知道在C语言中,整型数据类型包括:

char    short    int    long    long long

并且我们知道他们在内存中分别占1,2,4,4,8个字节,既然开辟了一定的空间,我们就要物尽其用啊!那么我们就要把想存的数据放入在对应的空间中啊,既然存进去了,那它又是怎么存的的呢?接下来博主就和大家一起来讨论一下数据是如何在内存中的存储的。

一、数据类型介绍

前面我们已经学习了基本的内置类型:

char     //字符数据类型
short    //短整型
int     //整形
long     //长整型
long long  //更长的整形
float    //单精度浮点数
double    //双精度浮点数

以及他们所占存储空间的大小。
类型的意义:

  1.  使用这个类型开辟内存空间的大小(大小决定了使用范围)。
  2.  如何看待内存空间的视角。

类型的基本归类

1.整形家族

char
    unsigned char
    signed char
short
    unsigned short [int]
    signed short [int]
int
    unsigned int
    signed int
long
    unsigned long [int]
    signed long [int]

值得注意的是,char类型也属于整型家族原因是:

字符在内存中存储的是字符的ASCII码值,ASCII码值是整型,所以字符类型归类到整型家族。

另外char究竟是singed char还是unsigned charC语言标准并没有规定,取决于编译器的底层实现。

2.浮点数家族

float
double
long double

3.构造类型 (自定义类型)

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

4.指针类型

int *pi;
char *pc;
float* pf;
void* pv;//无具体类型的指针

5.空类型

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。

void test(void)//test函数没有返回值且没有参数
{
    ;
}
int main(void)
{
    ;
}
//void通常可以省略

二、整形在内存中的存储

之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。

那接下来我们谈谈数据在所开辟内存中到底是如何存储的?

1.原码、反码、补码

计算机中的整数有三种2进制表示方法,即原码、反码和补码。
三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。

原码:直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。

补码:反码+1就得到补码。

1.1原码

正数

5
二进制表示:00000101
原码:00000000 00000000 00000000 00000101

负数

-5
二进制表示:10000101
原码:10000000 00000000 00000000 00000101

1.2反码

正数的原码、反码相等

负数:原码除符号位全部变成相反数(0-1)

-5
反码11111111 11111111 11111111 11111010

1.3补码

正数的原码、反码、补码相等

-5
补码:11111111 11111111 11111111 11111011

负数在反码的基础上加1

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统
一处理;
同时,加法和减法也可以统一处理(CPU只有加法器)此外,补码与原码相互转换,其运算过程
是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:

1.4计算规则

详细计算请看这里:你不知道的隐式类型转换规则

需要注意的是:

signed char的取值范围是-128到127,unsigned char的范围是255.

 我们可以看到对于a和b分别存储的是补码。但是我们发现顺序有点不对劲。
这是又为什么?

2 .大小端介绍

什么是大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地址中。

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit。但是在C语言中除了8 bit的char之外,还有16 bit的short型,32 bit的long型(要看具体的编译器),另外,对于位数大于8位的处理器,例如16位或者32位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因此就导致了大端存储模式和小端存储模式。

例如:一个 16bit 的 short 型 x ,在内存中的地址为 0x0010 , x 的值为 0x1122 ,那么 0x11 为高字节, 0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则为大端模式。很多的ARM,DSP都为小端模式。有些ARM处理器还可以由硬件来选择是大端模式还是小端模式。

百度2015年系统工程师笔试题:

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。

代码示例:

#include <stdio.h>
int check_sys()
{
    int i = 1;
    return (*(char *)&i);
}
int main()
{
    int ret = check_sys();
    if(ret == 1)
    {
        printf("小端\n");
    }
    else
    {
        printf("大端\n");
    }
return 0;
}

三、浮点型在内存中的存储

常见的浮点数:

3.14159
1E10
浮点数家族包括: float、double、long double 类型。
浮点数表示的范围:float.h中定义

1.一个例子

#include<stdio.h>
int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    *pFloat = 9.0;
    printf("num的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    return 0;
}

输出结果:

 2.浮点数存储规则

num 和 *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

  1. (-1)^S * M * 2^E
  2. (-1)^S表示符号位,当S=0,V为正数;当S=1,V为负数。
  3. M表示有效数字,大于等于1,小于2。
  4. 2^E表示指数位。

举例来说:
十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:
对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

 IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。
首先,E为一个无符号整数(unsigned int)

这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E从内存中取出还可以再分成三种情况:
E不全为0或不全为1

这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将
有效数字M前加上第一位的1。
比如:
0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为
1.0*2^(-1),其阶码为-1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

E全为1

这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

解释前面的题目:

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000 ?
首先,将 0x00000009 拆分,得到第一位符号位s=0,后面8位的指数 E=00000000 ,
最后23位的有效数字M=000 0000 0000 0000 0000 1001。

9 -> 0000 0000 0000 0000 0000 0000 0000 1001

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:
   V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)
显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

再看例题的第二部分。
请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?
首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

9.0 -> 1001.0 ->(-1)^01.0012^3 -> s=0, M=1.001,E=3+127=130

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即

0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,还原成十进制,正是 1091567616 。

四、《深入理解计算机系统》

关于上面的知识在很多书籍上都有讲解,这里我推荐一本书《深入理解计算机系统》

《深入理解计算机系统(英文版·第3版)》是2017年机械工业出版社出版图书,作者[美] 兰德尔 E.布莱恩特(Randal E. Bryant)大卫 R. 奥哈拉伦(David R. O'Hallaron)。

本书是一本将计算机软件和硬件理论结合讲述的经典教材,内容涵盖计算机导论、体系结构和处理器设计等多门课程。本书最大的特点是为程序员描述计算机系统的实现细节,通过描述程序是如何映射到系统上,以及程序是如何执行的,使读者更好地理解程序的行为,找到程序效率低下的原因。

感兴趣的朋友强烈建议学习一下!相信你一定会收获满满!!!


好了,关于数据在内存中的存储就讲到这里了,这篇文章是C语言进阶的开头篇,感兴趣的朋友们可以订阅专栏,感谢支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/80142.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何保证数据库的数据和Redis的数据一致性

实际项目中有可能会使用Redis缓存数据&#xff0c;那么在更新数据的时候如何保证数据库中的数据和Redis缓存的数据一致&#xff0c;缓存同步策略的选择是一个很重要的问题。网上有各种说法&#xff0c;大概总结有以下几种&#xff0c;看看每种方案是否可行以及存在的问题和适用…

解决git reset --soft HEAD^撤销commit时报错

今天在使用git回退功能的时候&#xff0c;遇到以下错误&#xff1a; 解决git reset --soft HEAD^撤销commit时报错 问题&#xff1a; 在进行完commit后&#xff0c;想要撤销该commit&#xff0c;于是使用了git reset --soft HEAD^命令&#xff0c;但是出现如下报错&#xff1…

科大讯飞星火模型申请与chatgpt 3.5模型以及new bing的对比

科大讯飞星火模型 申请科大讯飞星火认知大模型账号科大讯飞星火认知大模型使用1.界面介绍2. 在编程能力上与chatgpt 3.5对比科大讯飞星火模型chatgpt 3.5模型 3. 在图片生成能力上与new bing对比 总结 申请科大讯飞星火认知大模型账号 注册网址&#xff1a; 科大讯飞星火认知大…

ansible入门

ansible入门 一.ansible 背景介绍 Ansible 是一个广受欢迎的 IT 自动化系统。可以用来处理配置管理、应用自动化部署、云资源配给、网络 自动化和多借点部署等任务。其也可以使得复杂的变更如带负载均衡的零停机滚动更新更加容易。Ansible.com 1.1 自动化运维概念 1.1.1 运维…

python+django+mysql项目实践五(信息搜索)

python项目实践 环境说明: Pycharm 开发环境 Django 前端 MySQL 数据库 Navicat 数据库管理 信息搜素 输入内容进行搜索,内容有文本类和时间类 文本类需要模糊搜索,包含即检索 时间类需要选取时间范围内的内容 views 利用Q完成对指定内容的检索 检索后按检索内容更新…

RabbitMq-发布确认高级(避坑指南版)

在初学rabbitMq的时候&#xff0c;伙伴们肯定已经接触到了“发布确认”的概念&#xff0c;但是到了后期学习中&#xff0c;会接触到“springboot”中使用“发布确认”高级的概念。后者主要是解决什么问题呢&#xff1f;或者是什么样的场景引出这样的概念呢&#xff1f; 在生产环…

postgresql 分组

postgresql 数据汇总 分组汇总聚合函数注意 总结 分组统计总结 高级分组总结 分组汇总 聚合函数 聚合函数&#xff08;aggregate function&#xff09;针对一组数据行进行运算&#xff0c;并且返回单个结果。PostgreSQL 支持以下常见的聚合函数&#xff1a; • AVG - 计算一…

SpringCloud实用篇7——深入elasticsearch

目录 1 数据聚合1.1 聚合的种类1.2 DSL实现聚合1.2.1 Bucket聚合语法1.2.2 聚合结果排序1.2.3 限定聚合范围1.2.4 Metric聚合语法1.2.5.小结 1.3 RestAPI实现聚合1.3.1 API语法1.3.2 业务需求1.3.3 业务实现 2 自动补全2.1 拼音分词器2.2 自定义分词器2.3 自动补全查询2.4 实现…

C++ STL关联式容器(详解)

STL关联式容器 C STL关联式容器是什么&#xff1f; 在《C STL容器》一节中讲到&#xff0c;C 容器大致分为 2 类&#xff0c;即序列式容器和关联式容器。其中&#xff0c;序列式容器&#xff08;包括 array、vector、list、deque 和 forward_list&#xff09;已经在前面章节中…

Golang使用MinIO

最近在使用Golang做了一个网盘项目&#xff08;学习&#xff09;&#xff0c;文件存储一直保存在本地&#xff08;各厂商提供的oss贵&#xff09;&#xff0c;所以就在思考怎么来处理这些文件&#xff0c;类似的方案很对hdfs、fastdfs&#xff0c;但这其中MinIO是最近几年比较火…

【Django】Task1安装python环境及运行项目

【Django】Task1安装python环境及运行项目 写在最前 8月份Datawhale组队学习&#xff0c;在这个群除我佬的时代&#xff0c;写一下blog记录学习过程。 参考资源&#xff1a; 学习项目github&#xff1a;https://github.com/Joe-2002/sweettalk-django4.2 队长博客&#xff1a…

windows权限维持—SSPHOOKDSRMSIDhistorySkeletonKey

windows权限维持—SSP&HOOK&DSRM&SIDhistory&SkeletonKey 1. 权限维持介绍1.1. 其他 2. 基于验证DLL加载—SPP2.1. 操作演示—临时生效2.1.1. 执行命令2.1.2. 切换用户 2.2. 操作演示—永久生效2.2.1. 上传文件2.2.2. 执行命令2.2.3. 重启生效 2.3. 总结 3. 基…

k8s的pv和pvc创建

//NFS使用PV和PVC 1、配置nfs存储 2、定义PV 实现 下图的pv和pvc测试 pv的定义 这里定义5个PV&#xff0c;并且定义挂载的路径以及访问模式&#xff0c;还有PV划分的大小 vim /pv.yamlapiVersion: v1 kind: PersistentVolume metadata:name: pv001 spec:capacity:storage: …

私密数据采集:隧道爬虫IP技术的保密性能力探究

作为一名专业的爬虫程序员&#xff0c;今天要和大家分享一个关键的技术&#xff0c;它能够为私密数据采集提供保密性能力——隧道爬虫IP技术。如果你在进行敏感数据采集任务时需要保护数据的私密性&#xff0c;那么这项技术将是你的守护神。 在进行私密数据采集任务时&#xff…

【制作npm包4】api-extractor 学习

制作npm包目录 本文是系列文章&#xff0c; 作者一个橙子pro&#xff0c;本系列文章大纲如下。转载或者商业修改必须注明文章出处 一、申请npm账号、个人包和组织包区别 二、了解 package.json 相关配置 三、 了解 tsconfig.json 相关配置 四、 api-extractor 学习 五、npm包…

Fluent-MyBatis

Fluent-MyBatis Fluent-MyBatis 简介 何为 Fluent Mybatis&#xff1f; Fluent Mybatis, 是一款 Mybatis 语法增强框架, 综合了 Mybatis Plus, Dynamic SQL, JPA 等框架特性和优点 Fluent-MyBatis 开源地址 Fluent-MyBatis 原理 Fluent-MyBatis 原理是利用 annotation pro…

【IMX6ULL驱动开发学习】08.马达驱动实战:驱动编写、手动注册平台设备和设备树添加节点信息

目录 一、使用设备树 1.1 修改设备树流程 二、手动创建平台设备 三、总结&#xff08;附驱动程序&#xff09; 前情提要&#xff1a;​​​​​​​【IMX6ULL驱动开发学习】07.驱动程序分离的思想之平台总线设备驱动模型和设备树_阿龙还在写代码的博客-CSDN博客 手动注册…

爬虫逆向实战(五)--猿人学第三题

一、数据接口分析 主页地址&#xff1a;猿人学第三题 1、抓包 通过抓包可以发现数据接口是api/match/3 2、判断是否有加密参数 请求参数是否加密&#xff1f; 无请求头是否加密&#xff1f; 无响应是否加密&#xff1f; 无cookie是否加密&#xff1f; 无 二、发送请求 …

什么是闭包(closure)?为什么它在JavaScript中很有用?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 闭包&#xff08;Closure&#xff09;是什么&#xff1f;⭐ 闭包的用处⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…

基于安防监控EasyCVR视频汇聚融合技术的运输管理系统的分析

一、项目背景 近年来&#xff0c;随着物流行业迅速发展&#xff0c;物流运输费用高、运输过程不透明、货损货差率高、供应链协同能力差等问题不断涌现&#xff0c;严重影响了物流作业效率&#xff0c;市场对于运输管理数字化需求愈发迫切。当前运输行业存在的难题如下&#xf…