C++第七弹 -- C/C++内存管理

目录

  • 前言
  • 一. C/C++内存分布
  • 二. C语言中动态内存管理方式
  • 三. C++中动态内存管理
  • 四. operator new与operator delete函数
  • 五. new和delete的实现原理
    • 1.内置类型
    • 2. 自定义类型
  • 六. 定位new表达式(placement-new)
  • 七. 常见面试题
  • 总结

前言

在C/C++编程中,内存管理是至关重要的一个环节。程序员需要合理地分配和释放内存,以确保程序能够正常运行,避免内存泄漏和崩溃。本文将深入探讨C/C++内存管理机制,从内存分布、动态内存管理方式、new和delete的实现原理到定位new表达式,以及malloc/free和new/delete的区别,全面解析C/C++内存管理的方方面面。

更多文章, 点击关注博客主页 酷酷学!!!


正文开始

一. C/C++内存分布

int globalVar = 1;
static int staticGlobalVar = 1;
void Test()
{
 static int staticVar = 1;
 int localVar = 1;
 int num1[10] = { 1, 2, 3, 4 };
 char char2[] = "abcd";
 const char* pChar3 = "abcd";
 int* ptr1 = (int*)malloc(sizeof(int) * 4);
 int* ptr2 = (int*)calloc(4, sizeof(int));
 int* ptr3 = (int*)realloc(ptr2, sizeof(int) * 4);
 free(ptr1);
 free(ptr3);
}
1. 选择题:
   选项: A.栈  B.堆  C.数据段(静态区)  D.代码段(常量区)
   globalVar在哪里?____ C  staticGlobalVar在哪里?____C
   staticVar在哪里?____C   localVar在哪里?____A
   num1 在哪里?____A
   
   char2在哪里?____A   *char2在哪里?___A
   pChar3在哪里?____A      *pChar3在哪里?____D
   ptr1在哪里?____ A       *ptr1在哪里?____B
2. 填空题:
   sizeof(num1) = ____;40
   sizeof(char2) = ____;5      strlen(char2) = ____;4
   sizeof(pChar3) = ____;4     strlen(pChar3) = ____;4
   sizeof(ptr1) = ____;4
3. sizeof 和 strlen 区别?




char2会在栈中存储, 而*char2内字符串在常量区, 但是因为是使用数组,所以会将abcd\0从常量区拷贝一份到栈区的数组

在这里插入图片描述
sizeof 和 strlen 区别?

  1. 定义和类型
    sizeof:是一种运算符,用于计算对象或类型所占的空间大小(以字节为单位)。它在编译时就已经确定了值,并将结果在编译时嵌入到程序中。在头文件中,sizeof 通常被 typedef 为 unsigned int。
    strlen:是一种函数,用于计算字符串的长度,即字符串中字符的数量(不包括结束符 \0)。它定义在 <string.h> 头文件中,其原型为 size_t strlen(const char* str);。strlen 在运行时才能计算字符串的长度。
  2. 用法
    sizeof:
    可以用于基本数据类型(如 int、float 等)。
    可以用于数组、指针、结构体、联合等复合数据类型。
    可以直接作用于变量名或类型名,而不需要变量名或类型名被括号括起来(但使用括号可以提高代码的可读性)。
    对于指针,sizeof 返回的是指针本身的大小,而不是指针所指向的内存区域的大小。
    strlen:
    只能用于字符型指针(char*),且该指针必须指向以 \0 结尾的字符串。
    strlen 的参数必须是字符串的起始地址。
  3. 功能和结果
    sizeof:
    返回的是对象或类型所占的空间大小,单位是字节。
    对于数组,sizeof 返回的是整个数组所占的空间大小,包括所有元素和末尾的 \0(如果数组是字符数组的话)。
    对于指针,sizeof 返回的是指针本身的大小,与指针所指向的数据类型无关。
    strlen:
    返回的是字符串中字符的数量,不包括结束符 \0。
    如果传入的指针不是以 \0 结尾的,strlen 会继续读取内存直到遇到 \0 为止,这可能会导致越界访问。

在这里插入图片描述

【说明】

  1. 栈又叫堆栈–非静态局部变量/函数参数/返回值等等,栈是向下增长的。
  2. 内存映射段是高效的I/O映射方式,用于装载一个共享的动态内存库。用户可使用系统接口
    创建共享共享内存,做进程间通信。(Linux课程如果没学到这块,现在只需要了解一下)
  3. 堆用于程序运行时动态内存分配,堆是可以上增长的。
  4. 数据段–存储全局数据和静态数据。
  5. 代码段–可执行的代码/只读常量。

二. C语言中动态内存管理方式

malloc/calloc/realloc/free

void Test ()
{
 int* p1 = (int*) malloc(sizeof(int));
 free(p1);
 
 // 1.malloc/calloc/realloc的区别是什么?
 int* p2 = (int*)calloc(4, sizeof (int));
 int* p3 = (int*)realloc(p2, sizeof(int)*10);
 
 // 这里需要free(p2)吗?
 free(p3 );
//不需要,如果realloc成功, 会在p2的基础上进行扩容, 返回的是p2
//如果扩容失败,realloc会自动释放p2的空间,然后再重新找一块更大的空间,然后返回这块空间的地址.
}

malloc/calloc/realloc的区别?

在这里插入图片描述
在这里插入图片描述
3. 使用场景
malloc:适用于需要动态分配内存,但不需要初始化内存内容的场景。
calloc:适用于需要动态分配内存,并且希望内存内容初始化为0的场景。calloc的初始化特性使得它在分配内存后无需再进行额外的初始化操作。
realloc:适用于已分配的内存块大小不足以满足当前需求,或者分配了过大的内存块需要缩减的场景。realloc能够调整内存块的大小,同时尽可能保留原内存块中的数据。
4. 注意事项
使用malloc、calloc和realloc分配的内存都必须通过free函数来释放,以避免内存泄漏。
realloc在调整内存块大小时,如果成功则返回新的内存块地址(可能与原地址相同),如果失败则返回NULL,但原内存块仍然保持有效。因此,在使用realloc时,通常需要用一个临时指针来接收realloc的返回值,并在检查返回值后再决定是否更新原指针。
calloc分配的内存块会被初始化为0,这可能会带来一些额外的性能开销。如果不需要初始化内存内容,使用malloc可能更加高效。

三. C++中动态内存管理

C语言内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因
此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

对于内置类型

int main()
{
	//对于内置类型,除了用法方便,和malloc没什么区别
	int* p1 = new int;
	int* p2 = new int[10];
	//默认不初始化, 但是可以初始化

	int* p3 = new int(10);//初始化为10
	int* p4 = new int[10] {1, 2, 3, 4};

	delete p1;
	delete[] p2;
	return 0;
}

在这里插入图片描述

对于自定义类型

class A
{
public:
	A(int a = 0)
		:_a(a)
	{
		cout << "A(int a)" << endl;
	}

	A(int a1, int a2)
	{
		cout << "A(int a1, int a2)" << endl;
	}

	A(const A& aa)
		:_a(aa._a)
	{
		cout << "A(const A& aa)" << endl;
	}

	A& operator=(const A& aa)
	{
		cout << "A& operator=(const A& aa)" << endl;
		if (this != &aa)
		{
			_a = aa._a;
		}
		return *this;
	}

	~A()
	{
		cout << "~A()" << endl;
	}
private:
	int _a;
};

int main()
{
	//对于自定义类型, new能够调用构造初始化,malloc不在适用
	//A* p1 = new A;
	//A* p2 = new A(2);//传参构造

	//delete p1;//会调用析构函数
	//delete p2;

	A* p1 = new A[10];//连续申请10个空间
	//会调用十次默认构造
	//不想调用默认构造,下面是拷贝构造
	A aa1(1);
	A aa2(2);
	A aa3(3);
	A* p2 = new A[10]{ aa1,aa2,aa3 };

	A* p3 = new A[10]{ 1,2,3,4,{6,7} };//也可以直接写,进行隐式类型转化
	
	delete p1;
	delete p2;
	delete p3;
}

这里使用new进行内存开辟, 会自动调用它的构造函数, 使用delete也会自动调用它的析构函数

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用
new[]和delete[],注意:匹配起来使用。

 //结论:不要错配使用,一定匹配使用,否则结果是不确定
int main()
{
	//对于自定义类型,delete[]需要保存需要析构的次数
	// 所以会多开辟四个字节进行存储析构的次数
	// 然后释放空间的时候会-4释放掉多开辟的空间
	// 而delete和free不会,所以会报错 
	//A* p1 = new A;
	A* p2 = new A[10];  //44 or 40
	delete[] p2;

	delete p2;
	free(p2);

	//对于内置类型无影响
	int* p3 = new int[10];  //40
	//free(p3);

	return 0;
}

在这里插入图片描述

四. operator new与operator delete函数

new和delete是用户进行动态内存申请和释放的操作符,operator new 和operator delete是
系统提供的全局函数,new在底层调用operator new全局函数来申请空间,delete在底层通过
operator delete全局函数来释放空间。

/*
operator new:该函数实际通过malloc来申请空间,当malloc申请空间成功时直接返回;申请空间
失败,尝试执行空               间不足应对措施,如果改应对措施用户设置了,则继续申请,否
则抛异常。
*/
void* __CRTDECL operator new(size_t size) _THROW1(_STD bad_alloc)
{
	// try to allocate size bytes
	void* p;
	while ((p = malloc(size)) == 0)
		if (_callnewh(size) == 0)
		{
			// report no memory
			// 如果申请内存失败了,这里会抛出bad_alloc 类型异常
			static const std::bad_alloc nomem;
			_RAISE(nomem);
		}
	return (p);
}
/*
operator delete: 该函数最终是通过free来释放空间的
*/
void operator delete(void* pUserData)
{
	_CrtMemBlockHeader* pHead;
	RTCCALLBACK(_RTC_Free_hook, (pUserData, 0));
	if (pUserData == NULL)
		return;
	_mlock(_HEAP_LOCK);  /* block other threads */
	__TRY
		        /* get a pointer to memory block header */
		pHead = pHdr(pUserData);
	         /* verify block type */
	_ASSERTE(_BLOCK_TYPE_IS_VALID(pHead->nBlockUse));
	_free_dbg(pUserData, pHead->nBlockUse);
	__FINALLY
		_munlock(_HEAP_LOCK);  /* release other threads */
	__END_TRY_FINALLY
		return;
}
/*
free的实现
*/
#define   free(p)               _free_dbg(p, _NORMAL_BLOCK)

通过上述两个全局函数的实现知道,operator new 实际也是通过malloc来申请空间,如果
malloc申请空间成功就直接返回,否则执行用户提供的空间不足应对措施,如果用户提供该措施
就继续申请,否则就抛异常。operator delete 最终是通过free来释放空间的。

五. new和delete的实现原理

1.内置类型

如果申请的是内置类型的空间,new和malloc,delete和free基本类似,不同的地方是:
new/delete申请和释放的是单个元素的空间,new[]和delete[]申请的是连续空间,而且new在申
请空间失败时会抛异常,malloc会返回NULL。

2. 自定义类型

new的原理

  1. 调用operator new函数申请空间
  2. 在申请的空间上执行构造函数,完成对象的构造

delete的原理

  1. 在空间上执行析构函数,完成对象中资源的清理工作
  2. 调用operator delete函数释放对象的空间

new T[N]的原理

  1. 调用operator new[]函数,在operator new[]中实际调用operator new函数完成N个对
    象空间的申请
  2. 在申请的空间上执行N次构造函数

delete[]的原理

  1. 在释放的对象空间上执行N次析构函数,完成N个对象中资源的清理
  2. 调用operator delete[]释放空间,实际在operator delete[]中调用operator delete来释
    放空间

六. 定位new表达式(placement-new)

定位new表达式是在已分配的原始内存空间中调用构造函数初始化一个对象。

使用格式:
new (place_address) type或者new (place_address) type(initializer-list)
place_address必须是一个指针,initializer-list是类型的初始化列表

举个例子:

不通过new进行申请, 使用operator new, 跟malloc的用法一致, 只是前者会抛异常, 后者返回NULL, 那我们需要手动调用构造函数, 但是p1->A()这样写编译器不支持, 所以就需要用到定位new, 用法new(p1)A, 定位某个地址,进行调用其构造函数, 对于析构函数, 可以直接p1->~A()调用.

int main()
{
	//A* p1 = new A;

	//不想通过new进行申请,使用operator new需要手动调用构造函数
	A* p1 = (A*)operator new(sizeof(A));
	//p1->A(); // 编译器不支持这样显示调用构造
	//new(p1)A;  // 对已有空间,显示调用构造
	new(p1)A(10);  // 对已有空间,显示调用构造

	//后面回学到的内存池调用
	//A* p1 = pool.alloc(sizeof(A));
	//new(p1)A(10);  // 对已有空间,显示调用构造
	
	// delete p1
	p1->~A();//析构编译器支持
	operator delete(p1);
	
	// new []
	A* p2 = (A*)operator new[](sizeof(A)*10);
	//new(p2)A[10]{1,2,3,4};  // 对已有空间,显示调用构造
	for (int i = 0; i < 10; ++i)
		new(p2 + i)A(i);

	// delete[]
	for (int i = 0; i < 10; i++)
	{
		(p2 + i)->~A();
	}
	operator delete[](p2);

	return 0;
}

七. 常见面试题

malloc/free和new/delete的区别

malloc/free和new/delete的共同点是:都是从堆上申请空间,并且需要用户手动释放。不同的地
方是:

  1. malloc和free是函数,new和delete是操作符
  2. malloc申请的空间不会初始化,new可以初始化
  3. malloc申请空间时,需要手动计算空间大小并传递,new只需在其后跟上空间的类型即可,
    如果是多个对象,[]中指定对象个数即可
  4. malloc的返回值为void*, 在使用时必须强转,new不需要,因为new后跟的是空间的类型
  5. malloc申请空间失败时,返回的是NULL,因此使用时必须判空,new不需要,但是new需
    要捕获异常
  6. 申请自定义类型对象时,malloc/free只会开辟空间,不会调用构造函数与析构函数,而new
    在申请空间后会调用构造函数完成对象的初始化,delete在释放空间前会调用析构函数完成
    空间中资源的清理

总结

本文深入探讨了C/C++内存管理机制,从内存分布、动态内存管理方式、new和delete的实现原理到定位new表达式,以及malloc/free和new/delete的区别,全面解析了C/C++内存管理的方方面面。

理解C/C++内存管理机制对于编写高效、安全的代码至关重要。掌握本文所述内容,能够帮助你更好地理解程序运行时的内存分配和释放过程,避免内存泄漏、越界访问等问题,进而提升代码质量。

希望本文能够对你有所帮助,如果你有任何疑问,欢迎在评论区留言讨论。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/800890.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

领夹麦克风品牌排行榜前十名,录短视频用什么麦克风好?

随着自媒体行业的迅猛发展&#xff0c;对高品质音频设备的需求日益增长&#xff0c;尤其是无线领夹麦克风因其便携性和实用性受到了广泛欢迎。这种麦克风不仅适用于新闻采访和节目录制&#xff0c;也成为了网络直播和Vlog创作者的得力助手。它们能够提供清晰的录音效果&#xf…

最新版康泰克完整版- Kontakt v7.10.5 for Win和Mac,支持m芯片和intel,有入库工具

一。世界最受欢迎的采样器的新篇章 Native Instruments Kontakt是采样器领域的标准&#xff0c;您将获得高质量的滤波器&#xff0c;在这里您将找到经典的模拟电路和最现代的滤波器。每一个都可以根据您的口味进行定制&#xff0c;并且由于它&#xff0c;您可以获得前所未有的声…

AIGC笔记--基于Stable Diffusion实现图片的inpainting

1--完整代码 SD_Inpainting 2--简单代码 import PIL import torch import numpy as np from PIL import Image from tqdm import tqdm import torchvision from diffusers import AutoencoderKL, UNet2DConditionModel, DDIMScheduler from transformers import CLIPTextMod…

源码安装zabbix5.0.36完整版

源码安装zabbix5.0.36完整版 环境&#xff1a;CentOS Linux release 7.9&#xff0c;cpu:16&#xff0c;mem:32G软件包如下&#xff1a; zabbix-5.0.36.tar.gz mysql-8.0.28-linux-glibc2.17-x86_64-minimal.tar.xz nginx-1.6.2.tar.gz 1. 配置前准备 systemctl stop firewa…

K8s集群初始化遇到的问题

kubectl describe pod coredns-545d6fc579-s9g5s -n kube-system 找到原因1&#xff1a;CoreDNS Pod 处于 Pending 状态的原因是集群中的节点都带有 node.kubernetes.io/not-ready 污点 journalctl -u kubelet -f 14:57:59.178592 3553 remote_image.go:114] "PullIma…

集群节点状态异常的解决方式

文章目录 集群节点状态异常的解决方式问题概述解决方式1.关闭所有服务2.对所有集群删除Hadoop相关文件2.1 删除Hadoop系统运行时创建的临时数据和文件2.2 删除Hadoop的数据文件 3.重新对Hadoop节点进行初始化和启用4.重启服务&#xff0c;检查节点状态 集群节点状态异常的解决方…

Parallels Desktop 19 for Mac(PD19虚拟机)详细图文安装教程分享

Parallels Desktop 19是一款功能丰富、性能强大且易于使用的虚拟机软件&#xff0c;它可以让您在Mac上同时运行多个操作系统&#xff0c;为您提供更大的灵活性和兼容性。 Parallels Desktop 19 for Mac(PD19虚拟机)下载安装包 Parallels Desktop 19 for Mac(PD19虚拟机)详细图…

护眼台灯的功能作用有哪些?深挖台灯护眼是真的吗

随着现代生活方式的改变&#xff0c;孩子们面临着越来越多的视力挑战。在近视学生中&#xff0c;近10%为高度近视&#xff0c;且占比随年级升高而增长。幼儿园6岁儿童中有1.5%为高度近视&#xff0c;而高中阶段则达到了17.6%。为了守护孩子们的视力健康&#xff0c;在科技飞速发…

查看apk版本号

获取未安装的apk版本号 1. 使用aapt命令 使用cmd cd到aapt工具的位置。位于‌Android SDK的build-tools目录下。 使用aapt命令&#xff0c;指向apk所在绝对路径 aapt dump badging your_apk_file.apk &#xff08;win7按住shift键&#xff0c;右键apk文件选择“复制为路径”…

自学鸿蒙HarmonyOS的ArkTS语言<十>@BuilderParam装饰器

作用&#xff1a;当子组件多处使用时&#xff0c;给某处的子组件添加特定功能 一、初始化 1、只能被Builder装饰的方法初始化 2、使用所属自定义组件的builder方法初始化 3、使用父组件的builder方法初始化 - 把父组件的builder传过去&#xff0c;参数名和子组件的builderPar…

Android NDK开发之震动服务客户端编写程序(C++)

一、背景 最近有个小伙伴问我可不可以写一个可执行程序(C/C) 来实现Android设备的震动的功能。 作为一个多年的Android开发者&#xff0c;我觉得这是可以实现的。 但是由于过去我一直做App开发&#xff0c;也就把这个实现过程想简单了。 经过了几天的折腾&#xff0c;终于算是…

【python学习】numpy第三方库的定义、功能、使用场景和使用以及遇到的一些问题

引言 python学习学习到第三方库知识&#xff0c;首先学习的就是机器学习以及对应的numpy第三方库 文章目录 引言一、numpy第三方库的定义二、numpy第三方库的功能2.1数组操作2.2 线性代数计算2.3 随机数生成2.4 文件读写 三、numpy第三方库的使用场景3.1需要进行数值计算3.2 需…

【连续四届EI检索|稳定ACM出版、EI检索|线上线下结合】2024年第五届医学人工智能国际学术会议(ISAIMS 2024,8月13-17)

第五届医学人工智能国际学术会议&#xff08;ISAIMS2024&#xff09;将于2024年8月13-17日于荷兰阿姆斯特丹自由大学召开&#xff0c;国内分会场将于2024年10月25-27日于中国武汉召开。 会议自2020年至今已经成功举办四届&#xff0c;吸引了来自海内外相关领域学者600余名。本届…

C# Opencv实现本地以图搜图

地址&#xff1a;冯腾飞/本地以图搜图

【找不到视图问题解决】@RestController 与 @Controller注解的使用区别

一、问题描述 苍穹外卖在菜品分页查询功能实现的过程中&#xff0c;出现了找不到视图的情况 2024-07-12 21:54:20.860 ERROR 22488 --- [nio-8080-exec-4] o.a.c.c.C.[.[.[/].[dispatcherServlet] : Servlet.service() for servlet [dispatcherServlet] in context with p…

OpenSceneGraph学习笔记

目录 引言第一章&#xff1a;OSG概述一、前言&#xff08;1&#xff09;为什么要学习OSG?&#xff08;2&#xff09;OSG的组成&#xff08;3&#xff09;OSG的智能指针&#xff08;4&#xff09;OSG的安装编译 二、第一个OSG程序&#xff08;1&#xff09;Hello OSG程序&#…

移动UI:具备什么特征,可以被认定为科技风格。

移动UI设计在科技风格上通常具备以下特征&#xff1a; 1. 清晰简洁的排版&#xff1a; 科技风格的移动UI通常采用清晰简洁的排版&#xff0c;注重信息的层次感和结构化&#xff0c;以便用户能够快速、直观地获取所需信息。 2. 几何形状和线条&#xff1a; 科技风格的移动UI常…

Vscode ssh远程连接Linux服务器登录时密码password无法输入

问题 最近在用Vscode远程连接Linux服务器时&#xff0c;在终端提示输入密码password的时候用键盘输入没有反应。 以为是键盘坏了&#xff0c;然后尝试复制粘贴没有用。 后来找到了原因以及解决方法&#xff0c;感谢原帖作者&#xff08;原贴链接粘在下面&#xff09; 原因 …

2024.7.16日 最新版 docker cuda container tookit下载!

nvidia官方指导 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html 其实就是这几个命令&#xff0c;但是有墙&#xff1a; curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/shar…

知识图谱研究综述笔记

推荐导读&#xff1a;知识图谱Knowledge Graph Embeddings 论文标题:A Survey on Knowledge Graphs:Representation, Acquisition and Applications发表期刊:IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021本文作者&#xff1a;Shaoxiong Ji, Shirui Pan, M…