维度说明:
A[L]、Z[L]:(本层神经元个数、样本数)
W[L]:(本层神经元个数、上层神经元个数)
b[L]:(本层神经元个数、1)
dZ[L]:dA[L] * g’A(Z[L])
dZ[L]:(本层神经元个数、样本数)
dw = dL/dz * dz/dw = dz*x(链式法则)
db = dz(链式法则)
dW[L]:(本层神经元个数、上层神经元个数)
dA[L]:(本层神经元个数、样本数)
da = dz * w
dA[L-1] = W[L].T dZ[L],注意这里没有除以神经元个数,得到平均da。比如结果的第一个元素是多个dw1 * dz + dw1 * dz+ …dw1 * dz(神经元个数)的累加和
输出层采用sigmoid,隐藏层采用tanh
import numpy as np
# 设置一些画图相关的参数
import matplotlib.pyplot as plt
plt.rcParams['figure.figsize'] = (5.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
from project_03.utils.dnn_utils import *
from project_03.utils.testCases import *
def load_dataset():
train_dataset = h5py.File('../deep_learn_01/project_01/datasets/train_catvnoncat.h5', 'r')
train_set_x_orig = np.array(train_dataset['train_set_x'][:])
train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # 加载训练数据
test_dataset = h5py.File('../deep_learn_01/project_01/datasets/test_catvnoncat.h5', "r") # 加载测试数据
test_set_x_orig = np.array(test_dataset["test_set_x"][:])
test_set_y_orig = np.array(test_dataset["test_set_y"][:])
classes = np.array(test_dataset["list_classes"][:]) # 加载标签类别数据,这里的类别只有两种,1代表有猫,0代表无猫
train_set_y_orig = train_set_y_orig.reshape(
(1, train_set_y_orig.shape[0])) # 把数组的维度从(209,)变成(1, 209),这样好方便后面进行计算[1 1 0 1] -> [[1][1][0][1]]
test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0])) # 从(50,)变成(1, 50)
return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes
def sigmoid(Z):
A = 1 / (1 + np.exp(-Z))
return A
def relu(Z):
A = np.maximum(0, Z)
assert (A.shape == Z.shape)
return A
def initialize_parameters_deep(layers_dims):
"""
:param layers_dims: list of neuron num
example: layer_dims=[5,4,3],表示输入层有5个神经元,第一层有4个,最后二层有3个神经元(还有输出层的1个神经元)
:return: parameters: the w,b of each layer
"""
np.random.seed(1)
parameters = {}
L = len(layers_dims)
for l in range(1, L):
parameters[f"W{l}"] = np.random.randn(layers_dims[l], layers_dims[l - 1]) / np.sqrt(layers_dims[l - 1])
parameters[f"b{l}"] = np.zeros((layers_dims[l], 1))
assert (parameters[f"W{l}"].shape == (layers_dims[l], layers_dims[l - 1]))
assert (parameters[f"b{l}"].shape == (layers_dims[l], 1))
return parameters # W1,b1,W2,b2
def linear_forward(A, W, b):
"""
线性前向传播
"""
Z = np.dot(W, A) + b
assert (Z.shape == (W.shape[0], A.shape[1]))
return Z
def linear_activation_forward(A_prev, W, b, activation):
"""
:param A_prev: 上一层得到的A,输入到本层来计算本层的Z和A,第一层时A_prev就是输入X
:param W:本层的w
:param b:本层的b
:param activation: 激活函数
"""
Z = linear_forward(A_prev, W, b)
if activation == "sigmoid":
A = sigmoid(Z)
elif activation == "relu":
A = relu(Z)
else:
assert (1 != 1), "there is no support activation!"
assert (A.shape == (W.shape[0], A_prev.shape[1]))
linear_cache = (A_prev, W, b)
cache = (linear_cache, Z)
return A, cache
def L_model_forward(X, parameters):
"""
前向传播
:param X: 输入特征
:param parameters: 每一层的初始化w,b
"""
caches = []
A = X
L = len(parameters) // 2 # W1,b1,W2,b2, L=2
for l in range(1, L):
A_prev = A
A, cache = linear_activation_forward(A_prev, parameters[f"W{l}"], parameters[f"b{l}"], 'relu')
caches.append(cache) # A1,(X,W1,b1,Z1)
AL, cache = linear_activation_forward(A, parameters[f"W{L}"], parameters[f"b{L}"], activation="sigmoid")
caches.append(cache) # A2,(A1,W2,b2,Z2)
assert (AL.shape == (1, X.shape[1]))
return AL, caches
def compute_cost(AL, Y):
m = Y.shape[1]
logprobs = np.multiply(Y, np.log(AL)) + np.multiply((1 - Y), np.log(1 - AL))
cost = (-1 / m) * np.sum(logprobs)
assert (cost.shape == ())
return cost
def linear_backward(dZ, cache):
"""
:param dZ: 后面一层的dZ
:param cache: 前向传播保存下来的本层的变量
:return 本层的dw、db,前一层da
"""
A_prew, W, b = cache
m = A_prew.shape[1]
dW = np.dot(dZ, A_prew.T) / m
db = np.sum(dZ, axis=1, keepdims=True) / m
dA_prev = np.dot(W.T, dZ)
assert (dA_prev.shape == A_prew.shape)
assert (dW.shape == W.shape)
assert (db.shape == b.shape)
return dA_prev, dW, db
def linear_activation_backward(dA, cache, activation):
"""
:param dA: 本层的dA
:param cache: 前向传播保存的本层的变量
:param activation: 激活函数:"sigmoid"或"relu"
:return 本层的dw、db,前一次的dA
"""
linear_cache, Z = cache
# 首先计算本层的dZ
if activation == 'relu':
dZ = 1 * dA
dZ[Z <= 0] = 0
elif activation == 'sigmoid':
A = sigmoid(Z)
dZ = dA * A * (1 - A)
else:
assert (1 != 1), "there is no support activation!"
assert (dZ.shape == Z.shape)
# 这里我们又顺带根据本层的dZ算出本层的dW和db以及前一层的dA
dA_prev, dW, db = linear_backward(dZ, linear_cache)
return dA_prev, dW, db
def L_model_backward(AL, Y, caches):
"""
:param AL: 最后一层A
:param Y: 真实标签
:param caches: 前向传播的保存的每一层的相关变量 (A_prev, W, b),Z
"""
grads = {}
L = len(caches) # 2
Y = Y.reshape(AL.shape) # 让真实标签与预测标签的维度一致
dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL) # dA2
# 计算最后一层的dW和db,由成本函数来计算
current_cache = caches[-1] # 1,2
grads[f"dA{L - 1}"], grads[f"dW{L}"], grads[f"db{L}"] = linear_activation_backward(dAL, current_cache,
"sigmoid") # dA1, dW2, db2
# 计算前L-1层的dw和db,因为最后一层用的是sigmoid,
for c in reversed(range(1, L)): # reversed(range(1,L))的结果是L-1,L-2...1。是不包括L的。第0层是输入层,不必计算。 caches[0,1] L = 2 1,1
# c表示当前层
grads[f"dA{c - 1}"], grads[f"dW{c}"], grads[f"db{c}"] = linear_activation_backward(grads[f"dA{c}"],
caches[c - 1],
"relu")
return grads
def update_parameters(parameters, grads, learning_rate):
L = len(parameters) // 2
for l in range(1, L + 1):
parameters[f"W{l}"] = parameters[f"W{l}"] - grads[f"dW{l}"] * learning_rate
parameters[f"b{l}"] = parameters[f"b{l}"] - grads[f"db{l}"] * learning_rate
return parameters
def dnn_model(X, Y, layers_dim, learning_rate=0.0075, num_iterations=3000, print_cost=False):
np.random.seed(1)
costs = []
parameters = initialize_parameters_deep(layers_dim)
for i in range(0, num_iterations):
AL, caches = L_model_forward(X, parameters)
cost = compute_cost(AL, Y)
grads = L_model_backward(AL, Y, caches)
parameters = update_parameters(parameters, grads, learning_rate)
if print_cost and i % 100 == 0:
print("训练%i次后成本是: %f" % (i, cost))
costs.append(cost)
# 画出成本曲线图
plt.plot(np.squeeze(costs))
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.title("Learning rate =" + str(learning_rate))
plt.show()
return parameters
def predict(X, parameters):
m = X.shape[1]
n = len(parameters) // 2
p = np.zeros((1, m))
probas, caches = L_model_forward(X, parameters)
# 将预测结果转化成0和1的形式,即大于0.5的就是1,否则就是0
for i in range(0, probas.shape[1]):
if probas[0, i] > 0.5:
p[0, i] = 1
else:
p[0, i] = 0
return p
if __name__ == "__main__":
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset()
# 我们要清楚变量的维度,否则后面会出很多问题。下面我把他们的维度打印出来。
train_set_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_set_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
print("train_set_x_flatten shape: " + str(train_set_x_flatten.shape))
print("test_set_x_flatten shape: " + str(test_set_x_flatten.shape))
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
layers_dims = [12288, 20, 7, 5, 1]
# 根据上面的层次信息来构建一个深度神经网络,并且用之前加载的数据集来训练这个神经网络,得出训练后的参数
parameters = dnn_model(train_set_x, train_set_y, layers_dims, num_iterations=2000, print_cost=True)
# 对训练数据集进行预测
pred_train = predict(train_set_x, parameters)
print("预测准确率是: " + str(np.sum((pred_train == train_set_y) / train_set_x.shape[1])))
# 对测试数据集进行预测
pred_test = predict(test_set_x, parameters)
print("预测准确率是: " + str(np.sum((pred_test == test_set_y) / test_set_x.shape[1])))