昇思25天学习打卡营第21天|基于MindSpore的DCGAN生成漫画头像

基于MindSpore的DCGAN生成漫画头像

GAN基础原理

生成对抗网络(GAN)的基础原理是通过两个互相博弈的模型,生成模型和判别模型,来实现对数据分布的学习并产生新的、与真实数据极其相似的数据实例

生成对抗网络(GAN)是由Ian Goodfellow等人在2014年提出的,它是一种深度学习模型,通过让生成模型和判别模型相互竞争来提高生成数据的质量。生成模型负责生成数据,而判别模型则尝试区分真实数据和生成的数据。这种设计使得GAN非常适合于处理那些难以直接建模的复杂数据分布。

DCGAN原理

DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。

它最早由Radford等人在论文Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks中进行描述。判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量𝑧�,输出是3x64x64的RGB图像。

本教程将使用动漫头像数据集来训练一个生成式对抗网络,接着使用该网络生成动漫头像图片。

案例实例

环境准备

python版本:Python 3.9.19

安装依赖:

pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

完整依赖如下:

pip list
Package                        Version
------------------------------ --------------
absl-py                        2.1.0
aiofiles                       22.1.0
aiosqlite                      0.20.0
altair                         5.3.0
annotated-types                0.7.0
anyio                          4.4.0
argon2-cffi                    23.1.0
argon2-cffi-bindings           21.2.0
arrow                          1.3.0
astroid                        3.2.2
asttokens                      2.0.5
astunparse                     1.6.3
attrs                          23.2.0
auto-tune                      0.1.0
autopep8                       1.5.5
Babel                          2.15.0
backcall                       0.2.0
beautifulsoup4                 4.12.3
black                          24.4.2
bleach                         6.1.0
certifi                        2024.6.2
cffi                           1.16.0
charset-normalizer             3.3.2
click                          8.1.7
cloudpickle                    3.0.0
colorama                       0.4.6
comm                           0.2.1
contextlib2                    21.6.0
contourpy                      1.2.1
cycler                         0.12.1
dataflow                       0.0.1
debugpy                        1.6.7
decorator                      5.1.1
defusedxml                     0.7.1
dill                           0.3.8
dnspython                      2.6.1
download                       0.3.5
easydict                       1.13
email_validator                2.2.0
entrypoints                    0.4
exceptiongroup                 1.2.0
executing                      0.8.3
fastapi                        0.111.0
fastapi-cli                    0.0.4
fastjsonschema                 2.20.0
ffmpy                          0.3.2
filelock                       3.15.3
flake8                         3.8.4
fonttools                      4.53.0
fqdn                           1.5.1
fsspec                         2024.6.0
gitdb                          4.0.11
GitPython                      3.1.43
gradio                         4.26.0
gradio_client                  0.15.1
h11                            0.14.0
hccl                           0.1.0
hccl-parser                    0.1
httpcore                       1.0.5
httptools                      0.6.1
httpx                          0.27.0
huggingface-hub                0.23.4
idna                           3.7
importlib-metadata             7.0.1
importlib_resources            6.4.0
iniconfig                      2.0.0
ipykernel                      6.28.0
ipympl                         0.9.4
ipython                        8.15.0
ipython-genutils               0.2.0
ipywidgets                     8.1.3
isoduration                    20.11.0
isort                          5.13.2
jedi                           0.17.2
Jinja2                         3.1.4
joblib                         1.4.2
json5                          0.9.25
jsonpointer                    3.0.0
jsonschema                     4.22.0
jsonschema-specifications      2023.12.1
jupyter_client                 7.4.9
jupyter_core                   5.7.2
jupyter-events                 0.10.0
jupyter-lsp                    2.2.5
jupyter-resource-usage         0.7.2
jupyter_server                 2.14.1
jupyter_server_fileid          0.9.2
jupyter-server-mathjax         0.2.6
jupyter_server_terminals       0.5.3
jupyter_server_ydoc            0.8.0
jupyter-ydoc                   0.2.5
jupyterlab                     3.6.7
jupyterlab_code_formatter      2.2.1
jupyterlab_git                 0.50.1
jupyterlab-language-pack-zh-CN 4.2.post1
jupyterlab-lsp                 4.3.0
jupyterlab_pygments            0.3.0
jupyterlab_server              2.27.2
jupyterlab-system-monitor      0.8.0
jupyterlab-topbar              0.6.1
jupyterlab_widgets             3.0.11
kiwisolver                     1.4.5
markdown-it-py                 3.0.0
MarkupSafe                     2.1.5
matplotlib                     3.9.0
matplotlib-inline              0.1.6
mccabe                         0.6.1
mdurl                          0.1.2
mindspore                      2.2.14
mindvision                     0.1.0
mistune                        3.0.2
ml_collections                 0.1.1
mpmath                         1.3.0
msadvisor                      1.0.0
mypy-extensions                1.0.0
nbclassic                      1.1.0
nbclient                       0.10.0
nbconvert                      7.16.4
nbdime                         4.0.1
nbformat                       5.10.4
nest-asyncio                   1.6.0
notebook                       6.5.7
notebook_shim                  0.2.4
numpy                          1.26.4
op-compile-tool                0.1.0
op-gen                         0.1
op-test-frame                  0.1
opc-tool                       0.1.0
opencv-contrib-python-headless 4.10.0.84
opencv-python                  4.10.0.84
opencv-python-headless         4.10.0.84
orjson                         3.10.5
overrides                      7.7.0
packaging                      23.2
pandas                         2.2.2
pandocfilters                  1.5.1
parso                          0.7.1
pathlib2                       2.3.7.post1
pathspec                       0.12.1
pexpect                        4.8.0
pickleshare                    0.7.5
pillow                         10.3.0
pip                            24.1
platformdirs                   4.2.2
pluggy                         1.5.0
prometheus_client              0.20.0
prompt-toolkit                 3.0.43
protobuf                       5.27.1
psutil                         5.9.0
ptyprocess                     0.7.0
pure-eval                      0.2.2
pycodestyle                    2.6.0
pycparser                      2.22
pydantic                       2.7.4
pydantic_core                  2.18.4
pydocstyle                     6.3.0
pydub                          0.25.1
pyflakes                       2.2.0
Pygments                       2.15.1
pylint                         3.2.3
pyparsing                      3.1.2
pytest                         8.0.0
python-dateutil                2.9.0.post0
python-dotenv                  1.0.1
python-json-logger             2.0.7
python-jsonrpc-server          0.4.0
python-language-server         0.36.2
python-multipart               0.0.9
pytoolconfig                   1.3.1
pytz                           2024.1
PyYAML                         6.0.1
pyzmq                          25.1.2
referencing                    0.35.1
requests                       2.32.3
rfc3339-validator              0.1.4
rfc3986-validator              0.1.1
rich                           13.7.1
rope                           1.13.0
rpds-py                        0.18.1
ruff                           0.4.10
schedule-search                0.0.1
scikit-learn                   1.5.0
scipy                          1.13.1
semantic-version               2.10.0
Send2Trash                     1.8.3
setuptools                     69.5.1
shellingham                    1.5.4
six                            1.16.0
smmap                          5.0.1
sniffio                        1.3.1
snowballstemmer                2.2.0
soupsieve                      2.5
stack-data                     0.2.0
starlette                      0.37.2
sympy                          1.12.1
synr                           0.5.0
te                             0.4.0
terminado                      0.18.1
threadpoolctl                  3.5.0
tinycss2                       1.3.0
toml                           0.10.2
tomli                          2.0.1
tomlkit                        0.12.0
toolz                          0.12.1
tornado                        6.4.1
tqdm                           4.66.4
traitlets                      5.14.3
typer                          0.12.3
types-python-dateutil          2.9.0.20240316
typing_extensions              4.11.0
tzdata                         2024.1
ujson                          5.10.0
uri-template                   1.3.0
urllib3                        2.2.2
uvicorn                        0.30.1
uvloop                         0.19.0
watchfiles                     0.22.0
wcwidth                        0.2.5
webcolors                      24.6.0
webencodings                   0.5.1
websocket-client               1.8.0
websockets                     11.0.3
wheel                          0.43.0
widgetsnbextension             4.0.11
y-py                           0.6.2
yapf                           0.40.2
ypy-websocket                  0.8.4
zipp                           3.17.0

数据准备与处理

首先我们将数据集下载到指定目录下并解压。示例代码如下:

from download import download

url = "https://download.mindspore.cn/dataset/Faces/faces.zip"

path = download(url, "./faces", kind="zip", replace=True)

数据处理

首先为执行过程定义一些输入:

batch_size = 128          # 批量大小
image_size = 64           # 训练图像空间大小
nc = 3                    # 图像彩色通道数
nz = 100                  # 隐向量的长度
ngf = 64                  # 特征图在生成器中的大小
ndf = 64                  # 特征图在判别器中的大小
num_epochs = 3           # 训练周期数
lr = 0.0002               # 学习率
beta1 = 0.5               # Adam优化器的beta1超参数

定义create_dataset_imagenet函数对数据进行处理和增强操作。

import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

def create_dataset_imagenet(dataset_path):
    """数据加载"""
    dataset = ds.ImageFolderDataset(dataset_path,
                                    num_parallel_workers=4,
                                    shuffle=True,
                                    decode=True)

    # 数据增强操作
    transforms = [
        vision.Resize(image_size),
        vision.CenterCrop(image_size),
        vision.HWC2CHW(),
        lambda x: ((x / 255).astype("float32"))
    ]

    # 数据映射操作
    dataset = dataset.project('image')
    dataset = dataset.map(transforms, 'image')

    # 批量操作
    dataset = dataset.batch(batch_size)
    return dataset

dataset = create_dataset_imagenet('./faces')

# 通过create_dict_iterator函数将数据转换成字典迭代器,然后使用matplotlib模块可视化部分训练数据。

import matplotlib.pyplot as plt

def plot_data(data):
    # 可视化部分训练数据
    plt.figure(figsize=(10, 3), dpi=140)
    for i, image in enumerate(data[0][:30], 1):
        plt.subplot(3, 10, i)
        plt.axis("off")
        plt.imshow(image.transpose(1, 2, 0))
    plt.show()

sample_data = next(dataset.create_tuple_iterator(output_numpy=True))
plot_data(sample_data)

构造网络¶

当处理完数据后,就可以来进行网络的搭建了。按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。

生成器

生成器G的功能是将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列Conv2dTranspose转置卷积层来完成的,每个层都与BatchNorm2d层和ReLu激活层配对,输出数据会经过tanh函数,使其返回[-1,1]的数据范围内。

DCGAN论文生成图像如下所示:

我们通过输入部分中设置的nzngfnc来影响代码中的生成器结构。nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。

以下是生成器的代码实现:

import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normal

weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class Generator(nn.Cell):
    """DCGAN网络生成器"""

    def __init__(self):
        super(Generator, self).__init__()
        self.generator = nn.SequentialCell(
            nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.Tanh()
            )

    def construct(self, x):
        return self.generator(x)

generator = Generator()
判别器

如前所述,判别器D是一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的Conv2dBatchNorm2dLeakyReLU层对其进行处理,最后通过Sigmoid激活函数得到最终概率。

DCGAN论文提到,使用卷积而不是通过池化来进行下采样是一个好方法,因为它可以让网络学习自己的池化特征。

判别器的代码实现如下:

class Discriminator(nn.Cell):
    """DCGAN网络判别器"""

    def __init__(self):
        super(Discriminator, self).__init__()
        self.discriminator = nn.SequentialCell(
            nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),
            )
        self.adv_layer = nn.Sigmoid()

    def construct(self, x):
        out = self.discriminator(x)
        out = out.reshape(out.shape[0], -1)
        return self.adv_layer(out)

discriminator = Discriminator()

模型训练

损失函数

当定义了DG后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss。

优化器¶

这里设置了两个单独的优化器,一个用于D,另一个用于G。这两个都是lr = 0.0002beta1 = 0.5的Adam优化器。

# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')
训练模型

训练分为两个主要部分:训练判别器和训练生成器。

  • 训练判别器

    训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))的值。

  • 训练生成器

    如DCGAN论文所述,我们希望通过最小化𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))来训练生成器,以产生更好的虚假图像。

在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将fixed_noise批量推送到生成器中,以直观地跟踪G的训练进度。

下面实现模型训练正向逻辑:

def generator_forward(real_imgs, valid):
    # 将噪声采样为发生器的输入
    z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))

    # 生成一批图像
    gen_imgs = generator(z)

    # 损失衡量发生器绕过判别器的能力
    g_loss = adversarial_loss(discriminator(gen_imgs), valid)

    return g_loss, gen_imgs

def discriminator_forward(real_imgs, gen_imgs, valid, fake):
    # 衡量鉴别器从生成的样本中对真实样本进行分类的能力
    real_loss = adversarial_loss(discriminator(real_imgs), valid)
    fake_loss = adversarial_loss(discriminator(gen_imgs), fake)
    d_loss = (real_loss + fake_loss) / 2
    return d_loss

grad_generator_fn = ms.value_and_grad(generator_forward, None,
                                      optimizer_G.parameters,
                                      has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,
                                          optimizer_D.parameters)

@ms.jit
def train_step(imgs):
    valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
    fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)

    (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)
    optimizer_G(g_grads)
    d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)
    optimizer_D(d_grads)

    return g_loss, d_loss, gen_imgs

循环训练网络,每经过50次迭代,就收集生成器和判别器的损失,以便于后面绘制训练过程中损失函数的图像。

import mindspore

G_losses = []
D_losses = []
image_list = []

total = dataset.get_dataset_size()
for epoch in range(num_epochs):
    generator.set_train()
    discriminator.set_train()
    # 为每轮训练读入数据
    for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):
        g_loss, d_loss, gen_imgs = train_step(imgs)
        if i % 100 == 0 or i == total - 1:
            # 输出训练记录
            print('[%2d/%d][%3d/%d]   Loss_D:%7.4f  Loss_G:%7.4f' % (
                epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))
        D_losses.append(d_loss.asnumpy())
        G_losses.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    generator.set_train(False)
    fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
    img = generator(fixed_noise)
    image_list.append(img.transpose(0, 2, 3, 1).asnumpy())

    # 保存网络模型参数为ckpt文件
    mindspore.save_checkpoint(generator, "./generator.ckpt")
    mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")

结果展示

运行下面代码,描绘DG损失与训练迭代的关系图:

可视化训练过程中通过隐向量fixed_noise生成的图像。

import matplotlib.pyplot as plt
import matplotlib.animation as animation

def showGif(image_list):
    show_list = []
    fig = plt.figure(figsize=(8, 3), dpi=120)
    for epoch in range(len(image_list)):
        images = []
        for i in range(3):
            row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)
            images.append(row)
        img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
        plt.axis("off")
        show_list.append([plt.imshow(img)])

    ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
    ani.save('./dcgan.gif', writer='pillow', fps=1)

showGif(image_list)

从上面的图像可以看出,随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当num_epochs达到50以上时,生成的动漫头像图片与数据集中的较为相似,下面我们通过加载生成器网络模型参数文件来生成图像,代码如下:

# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)

fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()

fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):
    images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/798148.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SwiftUI 截图(snapshot)视频画面的极简方法

功能需求 在 万物皆可截图:SwiftUI 中任意视图(包括List和ScrollView)截图的通用实现 这篇博文中,我们实现了在 SwiftUI 中截图几乎任何视图的功能,不幸的是它对视频截图却无能为力。不过别着急,我们还有妙招。 在上面的演示图片中,我们在 SwiftUI 中可以随心所欲的截图…

【python数据结构精讲】双端队列

通过总结《流畅的Python》等书中的知识,总结Python中常用工具的方法。 deque,学名双端队列。 1. 常用方法 append():队列尾部添加appendleft():队首添加pop():移除队列最后一个元素popleft():移除队列第一…

Reinforced Causal Explainer for GNN论文笔记

论文:TPAMI 2023 图神经网络的强化因果解释器 论文代码地址:代码 目录 Abstract Introduction PRELIMINARIES Causal Attribution of a Holistic Subgraph​ individual causal effect (ICE)​ *Causal Screening of an Edge Sequence Reinforc…

springboot上传图片

前端的name的值必须要和后端的MultipartFile 形参名一致 存储本地

PDF公式转Latex

文章目录 摘要数据集 UniMER介绍下载链接 LaTeX-OCRUniMERNet安装UniMER 用的数据集介绍下载链接 PDF-Extract-Kit整体介绍效果展示评测指标布局检测公式检测公式识别 使用教程环境安装参考[模型下载](models/README.md)下载所需模型权重 在Windows上运行在macOS上运行运行提取…

FastAPI 学习之路(四十四)WebSockets

我们之前的分析都是基于http的请求,那么如果是websockets可以支持吗,答案是可以的,我们来看下是如何实现的。 from fastapi import WebSocket, FastAPI from fastapi.responses import HTMLResponseapp FastAPI()html """&…

基于JavaMailSenderImpl和velocity模板的邮件发送

Java邮箱集成发送&#xff0c; 本文介绍了基于JavaMailSenderImpl和velocity模板引擎&#xff0c;发送自定义的邮件内容。 一、依赖引入 <dependency><groupId>com.crygier</groupId><artifactId>SpringUtils</artifactId><version>1.0.…

秋招突击——7/12——复习{每日温度、完全平方数、无重复最长子串}——新作{字节面试——控制多线程按照顺序输出}

文章目录 引言复习每日温度复习实现参考学习 完全平方数复习实现参考学习 无重复字符的最长子串复习实现参考学习 新作控制多线程输出Java实现线程——不使用锁实现使用synchronized关键实现——使用锁实现使用synchronized、wait和notify关键字实现 总结 引言 今天又要面试字…

CSS相对定位和绝对定位的区别

CSS相对定位和绝对定位的区别 区别1&#xff1a;相对的对象不同 相对定位是相对于自己绝对定位是相对于离自己最近的有定位的祖先 区别2:是否会脱离文档流 相对定位不会脱离文档流&#xff0c;不会影响其他元素的位置绝对定位会脱离文档流&#xff0c;会影响其他元素的布局 代…

MAC通过SSH连接VirtualBox中的虚拟机

1、虚拟机网络连接方式使用桥接方式-桥接网卡 2、重启虚拟机&#xff0c;查看虚拟机ip地址是否跟Mac宿主机在同一网段 3、SSH工具&#xff08;推荐Tabby&#xff09;输入IP、用户名和密码就能连接虚拟机了

JS进阶-异常处理

学习目标&#xff1a; 掌握异常处理 学习内容&#xff1a; throw抛异常try/catch捕获异常debugger throw抛异常&#xff1a; 异常处理是预估代码执行过程中可能发生的错误&#xff0c;然后最大程度的避免错误的发生导致整个程序无法继续运行。 <title>throw抛异常</…

基于AT89C51单片机的多功能自行车测速计程器(含文档、源码与proteus仿真,以及系统详细介绍)

本篇文章论述的是基于AT89C51单片机的多功能自行车测速计程器的详情介绍&#xff0c;如果对您有帮助的话&#xff0c;还请关注一下哦&#xff0c;如果有资源方面的需要可以联系我。 目录 选题背景 原理图 PCB图 仿真图 代码 系统论文 资源下载 选题背景 美丽的夜晚&…

Ubuntu 安装 XRDP,替代系统自带RDP远程桌面

起因&#xff0c;Ubuntu的自带RDP远程桌面很好用&#xff0c;但很傻卵&#xff0c;必须登录。 而设置了自动登录也不能解开KEYRING&#xff0c;必须必须必须用GUI手动登录。 &#xff08;我远程我用头给你坐机子面前开显示器先登录&#xff1f;&#xff1f;&#xff09; 比起VN…

Linux - 基础开发工具(yum、vim、gcc、g++、make/Makefile、git)

目录 Linux软件包管理器 - yum Linux下安装软件的方式 认识yum 查找软件包 安装软件 如何实现本地机器和云服务器之间的文件互传 卸载软件 Linux编辑器 - vim vim的基本概念 vim下各模式的切换 vim命令模式各命令汇总 vim底行模式各命令汇总 vim的简单配置 Linux编译器 - gc…

网络技术相关知识概念

网络技术&#xff1a; 进程&#xff08;Process&#xff09; 定义&#xff1a;进程是程序的一次执行过程&#xff0c;它有自己的内存空间和系统资源&#xff08;资源独立&#xff09;。特性&#xff1a; 每个进程都有唯一的PID&#xff08;进程ID&#xff09;。进程间通信&am…

笔记 4 :linux 0.11 中继续分析 0 号进程创建一号进程的 fork () 函数

&#xff08;27&#xff09;本条目开始&#xff0c; 开始分析 copy_process () 函数&#xff0c;其又会调用别的函数&#xff0c;故先分析别的函数。 get_free_page &#xff08;&#xff09; &#xff1b; 先 介绍汇编指令 scasb &#xff1a; 以及 指令 sstosd &#xff1a;…

Vue1-Vue核心

目录 Vue简介 官网 介绍与描述 Vue的特点 与其它 JS 框架的关联 Vue周边库 初识Vue Vue模板语法 数据绑定 el与data的两种写法 MVVM模型 数据代理 回顾Object.defineProperty方法 何为数据代理 Vue中的数据代理 数据代理图示 事件处理 事件的基本使用 事件修…

Appium自动化测试系列: 2. 使用Appium启动APP(真机)

历史文章&#xff1a;Appium自动化测试系列: 1. Mac安装配置Appium_mac安装appium-CSDN博客 一、准备工作 1. 安卓测试机打开调试模式&#xff0c;然后使用可以传输数据的数据线连接上你的电脑。注意&#xff1a;你的数据线一定要支持传输数据&#xff0c;有的数据线只支持充…

MySQL:库操作

1. 创建数据库 create database [if not exists] name [create_specification], [create_specification]... []内为可选的选项 create_specification: character set charset_name -- 指定数据库采用的字符集 -- 数据库未来存储数据 collate collation_name -- 指定数据库字符…

Python3极简教程(一小时学完)下

目录 PEP8 代码风格指南 知识点 介绍 愚蠢的一致性就像没脑子的妖怪 代码排版 缩进 制表符还是空格 每行最大长度 空行 源文件编码 导入包 字符串引号 表达式和语句中的空格 不能忍受的情况 其他建议 注释 块注释 行内注释 文档字符串 版本注记 命名约定 …