【 香橙派 AIpro评测】烧系统到运行并使用Jupyter Lab 界面体验 AI 应用样例(新手福音)

文章目录

    • ⭐前言
    • ⭐初始化开发板
      • ⭐下载镜像烧系统
      • ⭐开发板初始化系统
        • 💖 远程ssh
        • 💖查看ubuntu桌面
        • 💖 远程向日葵
    • ⭐体验 AI 应用样例
        • 💖 运行 jupyterLab
        • 💖 打开Jupyter Lab页面
        • 💖 释放内存
        • 💖 运行目标检测样例
        • 💖 运行图像曝光增强样例
    • ⭐应用场景
    • ⭐总结

⭐前言

大家好,我是yma16,本期分享 【 香橙派 AIpro评测】烧系统到部署到体验 AI 应用样例:香橙派 AIpro烧系统到体验 AI 应用样例(新手福音)

香橙派 AIpro

Orange Pi AI Pro 开发板是香橙派联合华为精心打造的高性能 AI 开发板,其搭载了昇腾 AI 处理器,可提供 8TOPS INT8 的计算能力,内存提供了 8GB 和 16GB两种版本。可以实现图像、视频等多种数据分析与推理计算,可广泛用于教育、机器人、无人机等场景。

开发版图解

⭐初始化开发板

⭐下载镜像烧系统

官方下载镜像:
http://www.orangepi.cn/html/hardWare/computerAndMicrocontrollers/service-and-support/Orange-Pi-AIpro.html
下载unbuntu系统
unbuntu-select

官方的下载烧录镜像软件
https://etcher.balena.io/#download-etcher
下载昇腾开发一键制卡工具
点击下载
官方的sd卡配置文件可以提前查看内容

################################################################################
# 特别注意!!!
# 该文件用于设置开发板ip,请勿编辑任何无关内容,否则可能导致开发板无法启动
# 建议在两个网口均能直连时再根据需要将一个网口设置为"自动获得ip地址"
#   此时,一个网口连接路由,由路由分配ip,另一个网口直连电脑,用以调试

# 生效标志位:设置为true,则该配置文件生效一次后会自动改成false
# 若修改该文件并希望下次开机重新配置ip,将标志位改成true
setting_flag=true

################################################################################
# 网口0-由路由器分配ip地址(若设置为yes,则该网口的路由和ip不会生效)
eth0_dhcp4=yes

# 网口0-ip地址
eth0_address=192.168.1.100

# 网口0-掩码位数
eth0_mask=24

# 网口0-路由(多个ip配置路由,仅有首个会生效)
eth0_route=

# 网口0-域名地址-首选域名
eth0_dns_pre=8.8.8.8

# 网口0-域名地址-备选域名
eth0_dns_alter=114.114.114.114

################################################################################
# 网口0-由路由器分配ip地址(若设置为yes,则该网口的路由和ip不会生效)
eth1_dhcp4=no

# 网口1-ip地址
eth1_address=192.168.137.100

# 网口1-掩码位数
eth1_mask=24

# 网口1-路由(多个ip配置路由,仅有首个会生效)
eth1_route=192.168.137.1

# 网口1-域名地址-首选域名
eth1_dns_pre=8.8.8.8

# 网口1-域名地址-备选域名
eth1_dns_alter=114.114.114.114

################################################################################
# 网口0-由路由器分配ip地址(若设置为yes,则该网口的路由和ip不会生效)
usb0_dhcp4=no

# typeC-ip地址
usb0_address=192.168.0.2

# typeC-掩码位数
usb0_mask=24

# typeC-路由(多个ip配置路由,仅有首个会生效)
usb0_route=

# typeC-域名地址-首选域名
usb0_dns_pre=

# typeC-域名地址-备选域名
usb0_dns_alter=

build
选择镜像、选择挂载的内存卡,等待约10分钟(3.0接口)
make-unbuntu

⭐开发板初始化系统

将烧好的unbuntu卡放入sd card槽
正面
在这里插入图片描述

反面
在这里插入图片描述
输入密码 (操作手册有密码:Mind@123)
open

💖 远程ssh

通过热点查看连接设备名称是 orangepi ai的ip
ip-ui

输入指令 查看ip地址

ip addr

切换网络会更改ip
ssh 用户名@ip
输入密码
连接 香橙派 AIpro,连接成功!
ssh

💖查看ubuntu桌面

安装的是ubuntu桌面的系统,进入ubuntu 桌面
unbutu

查看磁盘

df -h

df-h

目录空间
dev/root29G
tempfs3.7G+1.5G
💖 远程向日葵

下载umo的版本即可

SUN-remote

⭐体验 AI 应用样例

香橙派 AIpro中预装了 Jupyter Lab 软件。Jupyter Lab 软件是一个基于 web
的交互式开发环境,集成了代码编辑器、终端、文件管理器等功能,使得开发者可以在一个界面中完成各种任务。并且我们在镜像中也预置了一些可以在Jupyter Lab 软件中运行的 AI 应用样例。这些样例都是使用 Python 编写的,并调用了 Python 版本的AscendCL 编程接口

💖 运行 jupyterLab

进入sample 启动jupyterLab
进入目录运行sh

cd ~
cd samples
./start_nontebook.sh

在这里插入图片描述

在这里插入图片描述

💖 打开Jupyter Lab页面

左侧是ai体验的实例,点击进入目录下的ipynb后缀文件会执行python实例,markdown是可执行的,酷

在这里插入图片描述

💖 释放内存

选择kernel下的shut down allkernets,即可关闭所有运行的样例,避免空间不足
在这里插入图片描述

💖 运行目标检测样例

运动目标检测样例
park-demo
样例代码

import os

import time
import argparse

import matplotlib.pyplot as plt
from PIL import Image
import numpy as np

from acllite_model import AclLiteModel as Model
from acllite_resource import AclLiteResource as AclResource
# om模型和图片的位置
MODEL_PATH = './cnnctc.om'
IMAGE_PATH = './predict.png'

# 初始化acl资源
acl_resource = AclResource()
acl_resource.init()

#导入本地om模型
print('load model....')
model = Model(MODEL_PATH)
print('load model finished....')

# 文本与数据编码
class CTCLabelConverter():
    def __init__(self, character):
        dict_character = list(character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i + 1
        self.character = ['[blank]'] + dict_character
        self.dict['[blank]'] = 0

    #将文本转换为数字编码
    def encode(self, text):
        length = [len(s) for s in text]
        text = ''.join(text)
        text = [self.dict[char] for char in text]

        return np.array(text), np.array(length)

    # 将数字编码转换为文本
    def decode(self, text_index, length):
        texts = []
        index = 0
        for l in length:
            t = text_index[index:index + l]
            char_list = []
            for i in range(l):
                if t[i] != self.dict['[blank]'] and (
                        not (i > 0 and t[i - 1] == t[i])):
                    char_list.append(self.character[t[i]])
            text = ''.join(char_list)
            texts.append(text)
            index += l
        return texts

运行时间8ms左右
run-time

💖 运行图像曝光增强样例

选择04-HDR 的demo样例
run-img定义资源管理类

import sys
import cv2
import numpy as np
import os
import time
import matplotlib.pyplot as plt
import acl

import acllite_utils as utils
import constants as constants
from acllite_model import AclLiteModel
from acllite_resource import resource_list
class AclLiteResource:
    """
    AclLiteResource类
    """
    def __init__(self, device_id=0):
        self.device_id = device_id
        self.context = None
        self.stream = None
        self.run_mode = None
        
    def init(self):
        """
        初始化资源
        """
        print("init resource stage:")
        ret = acl.init() # acl初始化

        ret = acl.rt.set_device(self.device_id) # 指定运算的device
        utils.check_ret("acl.rt.set_device", ret)

        self.context, ret = acl.rt.create_context(self.device_id) # 创建context
        utils.check_ret("acl.rt.create_context", ret)

        self.stream, ret = acl.rt.create_stream() # 创建stream
        utils.check_ret("acl.rt.create_stream", ret)

        self.run_mode, ret = acl.rt.get_run_mode() # 获取运行模式
        utils.check_ret("acl.rt.get_run_mode", ret)

        print("Init resource success")

    def __del__(self):
        print("acl resource release all resource")
        resource_list.destroy()
        if self.stream:
            print("acl resource release stream")
            acl.rt.destroy_stream(self.stream) # 销毁stream

        if self.context:
            print("acl resource release context")
            acl.rt.destroy_context(self.context) # 释放context

        print("Reset acl device ", self.device_id)
        acl.rt.reset_device(self.device_id) # 释放device
        
        print("Release acl resource success")

推理功能

path = os.getcwd()
input_w = 512   # 推理输入width
input_h = 512   # 推理输入height
INPUT_DIR = os.path.join(path, 'data/') # 输入路径
OUTPUT_DIR = os.path.join(path, 'out/') # 输出路径

def pre_process(dir_name, input_h, input_w):
    """
    预处理
    """
    BGR = cv2.imread(dir_name).astype(np.float32)
    h = BGR.shape[0]
    w = BGR.shape[1]
    # 进行归一化、缩放、颜色转换
    BGR = BGR / 255.0
    BGR = cv2.resize(BGR, (input_h, input_w))
    RGB = cv2.cvtColor(BGR, cv2.COLOR_BGR2RGB)
    return RGB, h, w

def post_process(input_img, result_list, pic, input_h, input_w):
    """
    后处理
    """
    o_w, o_h = input_img.shape[:2]
    # 获取推理结果,进行形状变换
    data = result_list[0].reshape(input_h, input_w, 3)
    # 进行缩放、颜色转换
    output = (cv2.resize(data, (o_w, o_h)) * 255.0).astype(np.uint8)
    output_img = cv2.cvtColor(output, cv2.COLOR_RGB2BGR)
    # 保存增强后图像
    file_name = os.path.join(OUTPUT_DIR, pic)
    cv2.imwrite(file_name, output_img)
    # 拼接输入图像和增强后图像,返回进行显示
    BGR_U8 = np.concatenate([input_img, output_img], axis=1)
    return BGR_U8

def main():
    # 创建推理结果存放路径
    if not os.path.exists(OUTPUT_DIR):
        os.mkdir(OUTPUT_DIR)
    # acl初始化
    acl_resource = AclLiteResource()
    acl_resource.init()
    # 加载模型
    model_path = os.path.join(path, "model/image_HDR_enhance.om")
    model = AclLiteModel(model_path)
    # 遍历数据集进行推理
    src_dir = os.listdir(INPUT_DIR)
    for pic in src_dir:
        if not pic.lower().endswith(('.bmp', '.dib', '.png', '.jpg', '.jpeg', '.pbm', '.pgm', '.ppm', '.tif', '.tiff')):
            print('it is not a picture, %s, ignore this file and continue,' % pic)
            continue
        pic_path = os.path.join(INPUT_DIR, pic)
        input_img = cv2.imread(pic_path)
        # 进行预处理
        RGB_image, o_h, o_w = pre_process(pic_path, input_h, input_w)
        # 计算推理耗时
        start_time = time.time()
        # 执行推理
        result_list = model.execute([RGB_image, ])
        end_time = time.time()
        # 打印推理的图片信息和耗时
        print('pic:{}'.format(pic))
        print('pic_size:{}x{}'.format(o_h, o_w))
        print('time:{}ms'.format(int((end_time - start_time) * 1000)))
        print('\n')
        # 进行后处理
        img_result = post_process(input_img, result_list, pic, input_h, input_w)      
        # 显示输入图像和增强后图像
        img_RGB = img_result[:, :, [2, 1, 0]] # RGB
        plt.axis('off')
        plt.xticks([])
        plt.yticks([])
        plt.imshow(img_RGB)
        plt.show()

结果

acl resource release all resource
AclLiteModel release source success
acl resource release stream
acl resource release context
Reset acl device  0
Release acl resource success

res

查看生成的out目录

cd out

res-hdr

⭐应用场景

香橙派 AIpro 开发板因为比较小巧轻量,内部集合Jupyter Lab 页面,非常方便,对于入门人工智能的开发者非常友好。

试用场景也不仅仅局限于本文的操作,还有以下的多个方向等:

  1. 原型开发:开发板是原型开发的理想工具。通过连接传感器、执行器和其他外设,开发人员可以快速验证和迭代他们的想法,并评估其可行性。

  2. 学习和教育:开发板可以作为学生和初学者学习编程和电子技术的工具。它们提供了一个实践的平台,让学习者通过实际操作来理解电子原理和编程概念。

  3. 项目演示:开发板可以用于演示和展示技术项目。无论是在学术会议上还是在公司内部会议上,通过展示实际的硬件和软件成果,可以增强演示和沟通的效果。

  4. 物联网应用:开发板是物联网应用开发的重要工具。它们可以用于构建和测试各种物联网设备和传感器网络。

  5. 自动化控制:开发板可以用于构建自动化控制系统。通过连接和控制传感器和执行器,可以实现各种自动化任务,如智能家居控制、工业自动化等。

⭐总结

香橙派 AIpro的性能体验
散热:开发板的散热性能良好,持续运行8个小时整个板子的温度都比较低。
噪音:开发板的噪音产生主要来自于风扇,开机过程中存在一点噪音,开机之后噪音就降下来了,影响不大。

负载:开发板的内存和cpu的使用情况状态处于健康状态,能够同时处理的任务或数据量。
在这里插入图片描述
烧录系统部署项目过程体验
从拿到板子,然后通过sd卡烧镜像系统,再把sd卡放入香橙派 AIpro,开机之后系统已经安装好了,直接输入密码就可以进入。比以往的安装系统方便快捷不少,不需要一步一步去配置网卡和dns用户名等。
进入开发板有内置的Jupyter Lab 可以在界面上运行ai应用实例,更方便调试运行和对比数据集的结果,相比于传统开发板 香橙派 AIpro更加简单和智能化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/797333.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AI Native时代:重塑人机交互与创作流程

随着2024年上海世界人工智能大会的圆满落幕,业界领袖们纷纷就AI应用的新机遇展开深入讨论。结合a16z播客中的观点,本文将探讨AI原生(AI Native)应用的几个关键特征,这些特征正在重新定义我们的工作方式和创作过程。 一…

排序-java(详解)

一,分类 主要的排序大致分为以下几类: 1,插入排序,又分为直接插入排序和希尔排序 2,选择排序,又分为选择排序和堆排序 3,交换排序,又分为冒泡排序和快速排序 4,归并…

【学习笔记】无人机(UAV)在3GPP系统中的增强支持(三)-机上无线电接入节点无人机

引言 本文是3GPP TR 22.829 V17.1.0技术报告,专注于无人机(UAV)在3GPP系统中的增强支持。文章提出了多个无人机应用场景,分析了相应的能力要求,并建议了新的服务级别要求和关键性能指标(KPIs)。…

大模型高效参数微调技术

文章目录 一、Fine-Tuning:微调二、Prompt-Tuning:提示调优2.1 工作原理2.2 PET (Pattern-Exploiting Training)2.3 Prompt-Tuning集成2.4 模板构建方式 三、Prefix Tuning:连续提示模板3.1 提出动机3.2 工作原理 四、P-Tuning V1/V24.1 P-Tu…

【Qt课设】基于Qt实现的中国象棋

一、摘 要 本报告讨论了中国象棋程序设计的关键技术和方法。首先介绍了中国象棋的棋盘制作,利用Qt中的一些绘画类的函数来进行绘制。在创作中国象棋棋子方面,首先,我们先定义一下棋子类,将棋子中相同的部分进行打包,使…

redisTemplate报错为nil,通过redis-cli查看前缀有乱码

public void set(String key, String value, long timeout) {redisTemplate.opsForValue().set(key, value, timeout, TimeUnit.SECONDS);} 改完之后 public void set(String key, String value, long timeout) {redisTemplate.setKeySerializer(new StringRedisSerializer()…

前端工程化10-webpack静态的模块化打包工具之各种loader处理器

9.1、案例编写 我们创建一个component.js 通过JavaScript创建了一个元素,并且希望给它设置一些样式; 我们自己写的css,要把他加入到Webpack的图结构当中,这样才能被webpack检测到进行打包, style.css–>div_cn.js–>main…

【架构】分布式与微服务架构解析

分布式与微服务架构解析 一、分布式1、什么是分布式架构2、为什么需要分布式架构3、分布式架构有哪些优势?4、分布式架构有什么劣势?5、分布式架构有哪些关键技术?6、基于分布式架构如何提高其高性能?7、如何基于架构提高系统的稳…

LabVIEW中modbusTCP怎样才能和profibusDP通信?

在LabVIEW中,Modbus TCP和Profibus DP是两种不同的工业通信协议,要实现这两者之间的通信,可以采用网关设备进行协议转换,或者通过一个中间设备(如PLC)进行数据桥接。以下是实现此通信的一些方法&#xff1a…

客家菜餐馆点菜小程序的设计

管理员账户功能包括:系统首页,个人中心,用户管理,菜系管理,菜品信息管理,我的订单管理,桌号管理,退款信息管理 微信端账号功能包括:系统首页,菜品信息&#…

220V降5V芯片输出电压电流封装选型WT

220V降5V芯片输出电压电流封装选型WT 220V降5V恒压推荐:非隔离芯片选型及其应用方案 在考虑220V转低压应用方案时,以下非隔离芯片型号及其封装形式提供了不同的电压电流输出能力: 1. WT5101A(SOT23-3封装)适用于将2…

证件照制作神器

软件详情 一款功能强大的证件照制作神器,提供换底色背景处理、AI智能美颜调整编辑功能,让你的证件照真实而又美丽! 随着科技的快速发展,越来越多的软件应用于各个方面,为人们的生活和工作带来便利。今天,…

[RuoYi-Vue] - 2. 入门案例

文章目录 🧀1. 步骤分析🥘2. 代码生成导入sql系统导入配置代码生成代码 🍩3. 代码导入导入课程菜单导入后端代码导入前端代码 🍯4. 访问测试 🧀1. 步骤分析 1、准备课程表结构和数据sql文件,导入到数据库中…

Tomcat组件概念和请求流程

Tomcat:是一个Servlet容器(实现了Container接口)&#xff0c;容器分层架构从上到下分为。Engine(List<Host>)->Host(List<Context>)->Context(List<Wrapper>)->Wrapper(List<Servlet>); Engine:引擎&#xff0c;Servlet 的顶层容器&#xff0…

东莞酷得 PMS134应广8位OTP单片机

1、特性 通用 OTP 系列 不建议使用于 AC 阻容降压供电或有高 EFT 要求的应用。应广不对使用于此类应用而不达安规要求负责 工作温度范围:-20C~70C 1.2.系统特性 一个硬件 16位计数器 两个8位硬件 PWM生成器 三个11 位硬件 PWM生成器(PWMG0&#xff0c;PWMG1…

四. TensorRT模型部署优化-pruning(sparse-tensor-core)

目录 前言0. 简述1. 自动驾驶中需要关注的电力消耗2. Ampere架构中的3rd Generation Tensor core3. Sparse tensor core做矩阵乘法总结参考 前言 自动驾驶之心推出的 《CUDA与TensorRT部署实战课程》&#xff0c;链接。记录下个人学习笔记&#xff0c;仅供自己参考 本次课程我们…

东软医疗 踩在中国医疗科技跃迁的风口上

恐怕没有哪一家本土医疗装备企业能像东软医疗一样&#xff0c;每一段成长的升维都发生在中国医疗科技跃迁史最重要的节点上。 在工业制造领域&#xff0c;医疗装备产业由于涉及数十个学科领域&#xff0c;其技术复合程度毫不逊于今天公众所熟知的EUV光刻机&#xff0c;是一门技…

【系统架构设计】操作系统(一)

操作系统&#xff08;一&#xff09; 操作系统的类型和结构操作系统基本原理进程管理进程三态模型挂起状态进程互斥 / 进程同步前趋图进程调度死锁 存储管理设备管理文件管理作业管理 操作系统原理的关键在于“一个观点、两条线索”&#xff1a;一个观点是以资源管理的观点来定…

MySQL-ubuntu环境下安装配置mysql

文章目录 什么是数据库&#xff1f;一、ubuntu环境下安装mysql二、配置mysql配置文件1.先登上root账号2.配置文件的修改show engines \G; mysql和mysqld数据库的基础操作登录mysql创建数据库显示当前数据库使用数据库创建表插入students表数据打印students表数据select * from …

Python应用爬虫下载QQ音乐歌曲!

目录&#xff1a; 1.简介怎样实现下载QQ音乐的过程&#xff1b; 2.代码 1.下载QQ音乐的过程 首先我们先来到QQ音乐的官网&#xff1a; https://y.qq.com/&#xff0c;在搜索栏上输入一首歌曲的名称&#xff1b; 如我在上输入最美的期待&#xff0c;按回车来到这个画面 我们首…