课程设计——Python+OpenCV数字图像处理[车牌识别]

Python opencv 车牌识别

  • 数字图像处理课程设计作业
  • Python3+OpenCV
  • 使用tkinter搭建界面
  • tmp/文件夹是数字图像处理过程
  • chepai/文件夹是车牌图片
  • pic/文件夹是程序界面图
  • PPT文件是验收时要讲的
  • 程序是从网上学习的并自己弄的,不完善,识别率不高

开发环境配置

pip install numpy

pip install pillow

pip install opencv-python

图片展示

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/797153.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

jenkins系列-09.jpom构建java docker harbor

本地先启动jpom server agent: /Users/jelex/Documents/work/jpom-2.10.40/server-2.10.40-release/bin jelexjelexxudeMacBook-Pro bin % sh Server.sh start/Users/jelex/Documents/work/jpom-2.10.40/agent-2.10.40-release/bin jelexjelexxudeMacBook-Pro bin % ./Agent.…

OpenCV图像处理——判断轮廓是否在圆环内

要判断一个轮廓是否在圆环内&#xff0c;可以将问题分解为两个步骤&#xff1a; 确保轮廓的所有点都在外圆内。确保轮廓的所有点都在内圆外。 下面是一个完整的示例代码&#xff0c;展示如何实现这一点&#xff1a; #include <opencv2/opencv.hpp> #include <iostr…

pytorch-LSTM

目录 1. RNN存在的问题2. LSTM的由来3. LSTM门3.1 遗忘门3.2 输入门3.3 输出门 4. LSTM是如何减轻梯度弥散问题 1. RNN存在的问题 如下图&#xff1a;RNN能满足预测下一个单词&#xff0c;但是对于获取更多的上下文信息就做不到了。 2. LSTM的由来 RNN能做到短时记忆即shor…

开发业务(2)——wordpress使用基础教程

外贸领域里面wordpress是比较通用的框架。由于多年的发展&#xff0c;性能和插件非常强大&#xff0c;包括支持各种企业站&#xff08;很多人已经设计了各种风格&#xff0c;只需要你将对应主题风格安装即可&#xff0c;当然也有付费的&#xff09;。这导致其内部生态非常强大&…

2024年上半年信息系统项目管理师——综合知识真题题目及答案(第1批次)(4)

2024年上半年信息系统项目管理师 ——综合知识真题题目及答案&#xff08;第1批次&#xff09;&#xff08;4&#xff09; 第61题&#xff1a;The project manager should use &#xff08;tool for the purpose to report on the work remaining for projects. A. cumulativ…

<数据集>夜间车辆识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;5000张 标注数量(xml文件个数)&#xff1a;5000 标注数量(txt文件个数)&#xff1a;5000 标注类别数&#xff1a;8 标注类别名称&#xff1a;[car, pedestrian, traffic light, traffic sign, bicycle, bus, truck…

编写商品列表和商品编辑和商品新增页面

addvue <template><!-- 传过来的id --> <!-- {{ $route.query.id }} --> <el-formref"FormRef"style"max-width: 600px":model"FormData":rule"rules"status-iconlabel-width"auto"class"demo-r…

手机数据恢复篇:如何从 Android 手机恢复消失的照片

丢失 Android 手机中的照片现在已成为您可能遇到的最糟糕的情况之一。随着手机在相机方面越来越好&#xff0c;即使是那些不热衷于拍照的人也成为了摄影师。 如今&#xff0c;人们可以随时随地拍摄照片&#xff0c;每一张照片都保存着回忆和数据&#xff0c;因此&#xff0c;丢…

Gitea 仓库事件触发Jenkins远程构建

文章目录 引言I Gitea 仓库事件触发Jenkins远程构建1.1 Jenkins配置1.2 Gitea 配置引言 应用场景:项目部署 I Gitea 仓库事件触发Jenkins远程构建 Gitea支持用于仓库事件的Webhooks 1.1 Jenkins配置 高版本Jenkins需要关闭跨域限制和开启匿名用户访问 在Jenkins启动前加入…

[MySQL][表操作]详细讲解

目录 1.创建表1.基本语法2.创建表案例 2.查看表结构3.修改表1.语法2.示例3.modify和change区别 4.删除表 1.创建表 1.基本语法 语法&#xff1a; CREATE TABLE table_name (field1 datatype,field2 datatype,field3 datatype ) character set 字符集 collate 校验规则 engin…

达梦数据库的系统视图v$sessions

达梦数据库的系统视图v$sessions 达梦数据库&#xff08;DM Database&#xff09;是中国的一款国产数据库管理系统&#xff0c;它提供了类似于Oracle的系统视图来监控和管理数据库。V$SESSIONS 是达梦数据库中的一个系统视图&#xff0c;用于显示当前数据库会话的信息。 以下…

分页以及tab栏切换,动态传类型

<view class"disTitle"><view class"disName">账户明细</view><view class"nav"><u-tabs lineWidth"0" :activeStyle"{color: #FD893F }" :list"navList" change"tabsChange&quo…

企业网络实验(vmware虚拟机充当DHCP服务器)所有IP全部保留,只为已知mac分配固定IP

文章目录 需求实验修改dhcp虚拟机配置文件测试PC获取IP查看user-bind 需求 (vmware虚拟机充当DHCP服务器)所有IP全部保留&#xff0c;只为已知mac分配固定IP 实验 前期配置&#xff1a; https://blog.csdn.net/xzzteach/article/details/140406092 后续配置均在以上配置的前…

LLM推理优化笔记1:KV cache、Grouped-query attention等

KV cache 对于decoder-only 模型比如现在如火如荼的大模型&#xff0c;其在生成内容的过程中&#xff0c;为了避免冗余计算&#xff0c;会将Transformer里的self-attention的K和V矩阵给缓存起来&#xff0c;这个过程即为KV cache。 decoder-only模型的生成过程是自回归的&…

单元测试实施最佳方案(背景、实施、覆盖率统计)

1. 什么是单元测试&#xff1f; 对于很多开发人员来说&#xff0c;单元测试一定不陌生 单元测试是白盒测试的一种形式&#xff0c;它的目标是测试软件的最小单元——函数、方法或类。单元测试的主要目的是验证代码的正确性&#xff0c;以确保每个单元按照预期执行。单元测试通…

Android C++系列:Linux网络(三)协议格式

1. 数据包封装 传输层及其以下的机制由内核提供,应用层由用户进程提供(后面将介绍如何使用 socket API编写应用程序),应用程序对通讯数据的含义进行解释,而传输层及其以下 处理通讯的细节,将数据从一台计算机通过一定的路径发送到另一台计算机。应用层 数据通过协议栈发到…

搜索引擎中的相关性模型

一、什么是相关性模型&#xff1f; 相关性模型主要关注的是query和doc的相关性。例如给定query&#xff0c;和1000个doc&#xff0c;找到哪个doc是好query最相关的。 二、为什么需要相关性模型&#xff1f; 熟悉es的应该都熟悉BM25相关性算法。它是一个很简单的相关性算法。我…

nginx的四层负载均衡实战

目录 1 环境准备 1.1 mysql 部署 1.2 nginx 部署 1.3 关闭防火墙和selinux 2 nginx配置 2.1 修改nginx主配置文件 2.2 创建stream配置文件 2.3 重启nginx 3 测试四层代理是否轮循成功 3.1 远程链接通过代理服务器访问 3.2 动图演示 4 四层反向代理算法介绍 4.1 轮询&#xff0…

安全防御,防火墙配置NAT转换智能选举综合实验

一、实验拓扑图 二、实验需求 1、办公区设备可以通过电信链路和移动链路上网(多对多的NAT&#xff0c;并且需要保留一个公网IP不能用来转换) 2、分公司设备可以通过总公司的移动链路和电信链路访问到Dmz区的http服务器 3、多出口环境基于带宽比例进行选路&#xff0c;但是&…

python:使用matplotlib库绘制图像(四)

作者是跟着http://t.csdnimg.cn/4fVW0学习的&#xff0c;matplotlib系列文章是http://t.csdnimg.cn/4fVW0的自己学习过程中整理的详细说明版本&#xff0c;对小白更友好哦&#xff01; 四、条形图 1. 一个数据样本的条形图 条形图&#xff1a;常用于比较不同类别的数量或值&…