深度学习DeepLearning二元分类 学习笔记

文章目录

    • 类别区分
      • 变量与概念
      • 逻辑回归
      • Sigmoid函数
      • 公式
      • 决策边
      • 逻辑损失函数和代价函数
      • 逻辑回归的梯度下降
      • 泛化
      • 过拟合的解决方案
      • 正则化

类别区分

变量与概念

决策边置信度阈值threshold过拟合欠拟合
正则化高偏差lambda(λ)

线性回归受个别极端值影响,不适合用于分类

逻辑回归

  1. 输出值介于(0,1)

  2. 解决输出标签,判断真值

  3. 用于回归和分类

Sigmoid函数

在这里插入图片描述

图注:z越大,函数g(z)值越趋近于1;z为负数,越小则函数g(z)值越趋近于零。

image-20230424185614938

公式

f w ⃗ , b = g ( w ⃗ ∗ x ⃗ + b ) = 1 1 + e − ( w ⃗ ∗ x ⃗ + b ) f_{\vec{w},b}=g(\vec{w}*\vec{x}+b)=\dfrac{1}{1+e^{-(\vec{w}*\vec{x}+b)}} fw ,b=g(w x +b)=1+e(w x +b)1

P ( y = 0 ) + P ( y = 1 ) = 1 P(y=0)+P(y=1)=1 P(y=0)+P(y=1)=1

一般写法: f w ⃗ , b ( x ⃗ ) = P ( y = 1 ∣ x ⃗ ; w ⃗ , b ⃗ ) f_{\vec{w},b}(\vec x)=P(y=1|\vec x;\vec w,\vec b) fw ,b(x )=P(y=1∣x ;w ,b )

含义:w,b为影响因子的时候,选中x行向量时,y=1的概率是多少。

决策边

在这里插入图片描述

逻辑损失函数和代价函数

L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ) = − y ( i ) l o g ( f w ⃗ , b ( x ( i ) ) ) − ( 1 − y ( i ) ) l o g ( 1 − f w ⃗ , b ( x ⃗ ( i ) ) ) L(f_{\vec w,b}(\vec x^{(i)}),y^{(i)})=-y^{(i)}log(f_{\vec w,b}(x^{(i)}))-(1-y^{(i)})log(1-f_{\vec w,b}(\vec x^{(i)})) L(fw ,b(x (i)),y(i))=y(i)log(fw ,b(x(i)))(1y(i))log(1fw ,b(x (i)))

分取值写,则如下图:

在这里插入图片描述

负的log函数取零到一的部分。如上图。

在这里插入图片描述

平方误差代价函数不适用原因:会出现多个局部最小值。

简化的代价函数为 J ( w ⃗ , b ) = − 1 m ∑ i = 1 m [ L ( f w ⃗ , b ( x ⃗ ( i ) ) , y ( i ) ] J(\vec w, b)=-\dfrac{1}{m}\sum\limits_{i=1}^m[L(f_{\vec w,b}(\vec x^{(i)}),y^{(i)}] J(w ,b)=m1i=1m[L(fw ,b(x (i)),y(i)]
它由极大似然估计法推出。
凸函数原因:凸优化学习

逻辑回归的梯度下降

重复地更新w和b,令其值为旧值-(学习率 α ∗ α * α 偏导数项)

泛化

若一个模型能从从未见过的数据中做出准确的预测,我们说它能够从训练集泛化到测试集。我们的目标是构建一个泛化精度尽可能高的模型

一个模型不能太过特殊以至于只能用于一些数据,也不能过于宽泛难以拟合数据。

image-20230425224821326 image-20230425225005457

过拟合的解决方案

  1. 收集更多数据,但数据收集能力可能有上限。
  2. 观察是否可以用更少特征,应选用最相关特征,但有些被忽略的特征可能实际上有用。有些算法可以自动选择合适的特征。
  3. 正则化,w1到wn可以缩小以适应训练集,不推荐缩小b

正则化

一种惩罚,如果某一个w的增大使代价函数J增大,那它实际应该减小。

J ( w ⃗ , b ) = 1 2 m [ ∑ i = 1 m ( f w ⃗ , b ( x ⃗ ( i ) ) − y ( i ) ) 2 + λ 2 m ∑ j = 1 n w j 2 + λ 2 m b 2 ] ( λ > 0 ) J(\vec w, b)=\dfrac{1}{2m}[\sum\limits_{i=1}^m(f_{\vec w, b}(\vec x^{(i)})-y^{(i)})^2+\dfrac{λ}{2m}\sum\limits_{j=1}^nw_j^2+\dfrac{λ}{2m}b^2](λ>0) J(w ,b)=2m1[i=1m(fw ,b(x (i))y(i))2+2mλj=1nwj2+2mλb2](λ>0)

选择合适的λ以避免过拟合和欠拟合。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/796141.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

TemuAPI接口:获取商品详情功能

temu作为拼多多海外的跨境电商平台,已经在海外电商领域崭露头角,越来越多的外贸人选择temu作为发展平台。今天的接口可以用于获取temu平台的商品详情,包括价格、商品图片、规格、评论等内容,如有需要,请点击文末链接或…

AFL安装和初步使用

代码漏洞 AFL安装和初步使用 0. 前言1. 下载2. 安装3. 初步使用1)准备文件2)插桩编译C生成二进制3)开始Fuzz(1)正常执行(2)**可能出现的问题**(3)正常结果 AFL安装和初步…

【Linux网络】数据链路层【下】{MAC/MTU/ARP/ICMP/NAT/PING/代理服务器原理}

文章目录 1.逐步深入数据链路层1.1MAC帧1.2由集线器到交换机1.3认识MTU 2.ARP 地址解析协议/RARP逆地址解析协议3.DNS(Domain Name System)域名从输入url后到能看到网页 发生了什么【典中典】 4.ICMP协议:一个网络层协议有了TCP,为什么还要用ICMPICMP协议…

论文研读:ViT-V-Net—用于无监督3D医学图像配准的Vision Transformer

目录 摘要 介绍 方法 VIT-V-Net体系结构 损失函数 图像相似性度量 变形场正则化 结果与讨论 摘要 在过去的十年里,卷积神经网络(ConvNets)在各种医学成像应用中占据了主导地位并取得了最先进的性能。然而,由于缺乏对图像中远程空间关系的理解&a…

解决Ubuntu 22.04 vscode搜狗拼音输入无法输入中文

关闭vscode 编辑~/.bashrc,添加以下内容 export GTK_IM_MODULExim export QT_IM_MODULExim export XMODIFIERSimfcitx source ~/.bashrc && code 重新加载环境变量后启动code,即可以正常使用搜狗拼音输入法了

读人工智能全传11人工智能会出什么错

1. 人工智能会出什么错 1.1. 一些报道是公正合理的,不过坦白地说,大部分报道都愚蠢得无可救药 1.2. 一些报道颇有知识性和引导性,而大部分则是杞人忧天式的恐吓 1.3. 滑稽的报道迎合了大众对人工智能的“终结者式恐惧” 1.3.1. 我们创造出…

win10系统更新后无法休眠待机或者唤醒,解决方法如下

是否使用鼠标唤醒 是否使用鼠标唤醒 是否使用键盘唤醒

C# .net6使用Hangfire

首先我们先来了解什么是Hangfire? Hangfire 是一个用于 .NET 的任务调度库,允许你在后台运行任务,而不需要依赖外部的任务队列服务或复杂的基础设施。它简化了后台任务的创建、调度和管理过程,使得在 .NET 应用程序中处理长期运行…

昇思25天学习打卡营第25天 | ResNet50迁移学习

ResNet50迁移学习 https://gitee.com/mindspore/docs/blob/r2.2/tutorials/application/source_zh_cn/cv/transfer_learning.ipynb 在实际应用场景中,由于训练数据集不足,所以很少有人会从头开始训练整个网络。普遍的做法是,在一个非常大的…

嵌入式C++、Qt/QML和MQTT:智能工厂设备监控系统的全流程介绍(附代码示例)

1. 项目概述 本项目旨在开发一套先进的智能工厂设备监控系统,集成嵌入式技术、工业通信协议和人机界面等多项技术,实现对工厂设备的全方位实时监控、高精度数据采集和智能化分析。该系统将显著提升工厂设备的运行效率,大幅降低维护成本&…

Python数据分析-Excel和 Text 文件的读写操作

1.Excel和 Text 文件的读写操作 1. Text 文件读写包 import sys print(sys.argv[0]) print(__file__) print(sys.path[0]) qopen(sys.path[0] "\out.txt","w",encodingutf-8) q.write(这个是测试一下) q.close() print(done)open 语句可以打开的创建text…

案例 | 人大金仓助力山西政务服务核心业务系统实现全栈国产化升级改造

近日,人大金仓支撑山西涉企政策服务平台、政务服务热线联动平台、政务网、办件中心等近30个政务核心系统完成全栈国产化升级改造,推进全省通办、跨省通办、综合业务受理、智能审批、一件事一次办等业务的数字化办结进程,为我国数字政务服务提…

大鲸鱼—docker 基本概念及安装使用

目录 一、docker前言 1.什么是Docker? 2.Docker的宗旨 3.容器的优点 4.Docker与虚拟机的区别 5.Docker核心概念 镜像 容器 仓库 6.为什么要用容器 7.容器越来越受欢迎的原因 8.容器在内核中支持2种重要技术 二、Docker安装 三、Docker 镜像操作 1.搜…

<数据集>水稻叶片病害识别数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:1448张 标注数量(xml文件个数):1448 标注数量(txt文件个数):1448 标注类别数:3 标注类别名称:[BrownSpot,RiceBlast,BacterialBlight] 序号类别名称图片数框数1Rice…

uniapp微信小程序 TypeError: $refs[ref].push is not a function

我的写法 this.$refs.addPopup.open();报错 打印出来是这样的 解决 参考未整理 原因 在当前页面使用的v-for循环 并且循环体内也有组件使用了ref(而我没有把每个ref做区别命名) 这样就导致了我有很多同名的ref,然后就报错了 解决办法&a…

Java类与对象

类是对现实世界中实体的抽象,是对一类事物的描述。 类的属性位置在类的内部、方法的外部。 类的属性描述一个类的一些可描述的特性,比如人的姓名、年龄、性别等。 [public] [abstract|final] class 类名 [extends父类] [implements接口列表] { 属性声…

超声波清洗机哪家好?家用超声波眼镜清洗机推荐

超声波清洗机现在已经成为了很多家庭的新宠,它能够帮助我们轻松解决日常生活中的清扫烦恼。但是,面对市面上品种繁多的清洗机产品,我们该如何选择一款适合自己的呢?毕竟不同的品牌和型号,在清洗效果、噪音水平、除菌能力等方面都…

电商出海第一步,云手机或成重要因素

电商出海第一步并非易事,挑战和机遇并存,出海企业或个人或将借助云手机从而达成商业部署全球化的目的; 下面我们从网络稳定、数据安全、成本、以及多平台适配方面来看,究竟为什么说云手机会成为出海的重要因素; 首先…

虚幻引擎ue5游戏运行界面白茫茫一片,怎么处理

根剧下图顺序即可调节游戏运行界面光照问题: 在大纲里找到post,然后选中它,找到Exposure 把最低亮度和最高亮度的0改为1即可

提质增效,还看拖拽式报表设计器

随着业务量的增大,传统的报表已经无法满足发展需要了,借助于低代码技术平台、拖拽式报表设计器的优势特点,可以助力摆脱信息孤岛、部门之间协作沟通不畅的弊端,实现高效增值的市场价值。如果想实现提质、降本、增效等发展目标&…