MySQL实战45讲学习笔记(持续更新ing……)

文章目录

  • 一、基础架构:一条SQL查询语句是如何执行的?
    • 概览
    • 连接器
    • 查询缓存
    • 分析器
    • 优化器
    • 执行器
  • 二、日志系统:一条SQL更新语句是如何执行的?
    • redo log
    • binlog
    • 两阶段提交


一、基础架构:一条SQL查询语句是如何执行的?

概览

在这里插入图片描述

大体来说,MySQL可以分为两层

  • Server层
    涵盖MySQL的大多数核心服务 功能
    • 连接器
    • 查询缓存
    • 分析器
    • 优化器
    • 执行器
    • 所有的内置函数(如日期、时间、数学和加密函数等)
    • 跨存储引擎的功能
      • 存储过程
      • 触发器
      • 视图
      • ……
  • 存储引擎层
    插件式的架构,负责数据的存储和提取
    • Innodb
    • MyISAM
    • Memory

连接器

mysql -h$ip -P$port -u$user -p

连接命令中的mysql是客户端工具,用来跟服务端建立连接。在完成经典的TCP握手后,连接器
就要开始认证你的身份,这个时候用的就是你输入的用户名和密码。

  • 如果用户名或密码不对,你就会收到一个"Access denied for user"的错误,然后客户端程序
    结束执行。
  • 如果用户名密码认证通过,连接器会到权限表里面查出你拥有的权限。之后,这个连接里面
    的权限判断逻辑,都将依赖于此时读到的权限。

在这里插入图片描述
客户端如果太长时间没动静,连接器就会自动将它断开。这个时间是由参数wait_timeout控制的,默认值是8小时。

如果在连接被断开之后,客户端再次发送请求的话,就会收到一个错误提醒: Lost connection to MySQL server during query。这时候如果你要继续,就需要重连,然后再执行请求了。

数据库里面,长连接是指连接成功后,如果客户端持续有请求,则一直使用同一个连接。短连接则是指每次执行完很少的几次查询就断开连接,下次查询再重新建立一个。

建立连接的过程通常是比较复杂的,所以我建议你在使用中要尽量减少建立连接的动作,也就是尽量使用长连接。

但是全部使用长连接后,你可能会发现,有些时候MySQL占用内存涨得特别快,这是因为MySQL在执行过程中临时使用的内存是管理在连接对象里面的。这些资源会在连接断开的时候才释放。所以如果长连接累积下来,可能导致内存占用太大,被系统强行杀掉(OOM),从现象看就是MySQL异常重启了。

怎么解决这个问题呢?你可以考虑以下两种方案。

  • 定期断开长连接。使用一段时间,或者程序里面判断执行过一个占用内存的大查询后,断开连接,之后要查询再重连。
  • 如果你用的是MySQL 5.7或更新版本,可以在每次执行一个比较大的操作后,通过执行 mysql_reset_connection 来重新初始化连接资源。这个过程不需要重连和重新做权限验证,但是会将连接恢复到刚刚创建完时的状态。

查询缓存

MySQL拿到一个查询请求后,会先到查询缓存看看,之前是不是执行过这条语句。之前执行过的语句及其结果可能会以key-value对的形式,被直接缓存在内存中。key是查询的语句,value是查询的结果。如果你的查询能够直接在这个缓存中找到key,那么这个value就会被直接返回给客户端。

如果语句不在查询缓存中,就会继续后面的执行阶段。执行完成后,执行结果会被存入查询缓存中。你可以看到,如果查询命中缓存,MySQL不需要执行后面的复杂操作,就可以直接返回结果,这个效率会很高。

但是大多数情况下我会建议你不要使用查询缓存,为什么呢?因为查询缓存往往弊大于利。

查询缓存的失效非常频繁,只要有对一个表的更新,这个表上所有的查询缓存都会被清空。因此很可能你费劲地把结果存起来,还没使用呢,就被一个更新全清空了。对于更新压力大的数据库来说,查询缓存的命中率会非常低。除非你的业务就是有一张静态表,很长时间才会更新一次。比如,一个系统配置表,那这张表上的查询才适合使用查询缓存。

好在MySQL也提供了这种“按需使用”的方式。你可以将参数query_cache_type设置成DEMAND,这样对于默认的SQL语句都不使用查询缓存。而对于你确定要使用查询缓存的语句,可以用SQL_CACHE显式指定,像下面这个语句一样:

select SQL_CACHE * from T where ID=10;

需要注意的是,MySQL 8.0版本直接将查询缓存的整块功能删掉了,也就是说8.0开始彻底没有这个功能了。

分析器

如果没有命中查询缓存,就要开始真正执行语句了。首先,MySQL需要知道你要做什么,因此需要对SQL语句做解析。

在这里插入图片描述

优化器

在这里插入图片描述
在这里插入图片描述

执行器

在这里插入图片描述
在这里插入图片描述

二、日志系统:一条SQL更新语句是如何执行的?

在这里插入图片描述

redo log

不知道你还记不记得《孔乙己》这篇文章,酒店掌柜有一个粉板,专门用来记录客人的赊账记录。如果赊账的人不多,那么他可以把顾客名和账目写在板上。但如果赊账的人多了,粉板总会有记不下的时候,这个时候掌柜一定还有一个专门记录赊账的账本。

如果有人要赊账或者还账的话,掌柜一般有两种做法:

  • 一种做法是直接把账本翻出来,把这次赊的账加上去或者扣除掉;
  • 另一种做法是先在粉板上记下这次的账,等打烊以后再把账本翻出来核算

在生意红火柜台很忙时,掌柜一定会选择后者,因为前者操作实在是太麻烦了。首先,你得找到这个人的赊账总额那条记录。你想想,密密麻麻几十页,掌柜要找到那个名字,可能还得带上老花镜慢慢找,找到之后再拿出算盘计算,最后再将结果写回到账本上。

这整个过程想想都麻烦。相比之下,还是先在粉板上记一下方便。你想想,如果掌柜没有粉板的帮助,每次记账都得翻账本,效率是不是低得让人难以忍受?

同样,在 MySQL 里也有这个问题,如果每一次的更新操作都需要写进磁盘,然后磁盘也要找到对应的那条记录,然后再更新,整个过程 IO 成本、查找成本都很高。为了解决这个问题,MySQL 的设计者就用了类似酒店掌柜粉板的思路来提升更新效率。

而粉板和账本配合的整个过程,其实就是 MySQL 里经常说到的 WAL 技术,WAL 的全称是 Write-Ahead Logging,它的关键点就是先写日志,再写磁盘,也就是先写粉板,等不忙的时候再写账本。

具体来说,当有一条记录需要更新的时候,InnoDB 引擎就会先把记录写到 redo log(粉板)里面,并更新内存,这个时候更新就算完成了。同时,InnoDB 引擎会在适当的时候,将这个操作记录更新到磁盘里面,而这个更新往往是在系统比较空闲的时候做,这就像打烊以后掌柜做的事。

如果今天赊账的不多,掌柜可以等打烊后再整理。但如果某天赊账的特别多,粉板写满了,又怎么办呢?这个时候掌柜只好放下手中的活儿,把粉板中的一部分赊账记录更新到账本中,然后把这些记录从粉板上擦掉,为记新账腾出空间。

与此类似,InnoDB 的 redo log 是固定大小的,比如可以配置为一组 4 个文件,每个文件的大小是 1GB,那么这块“粉板”总共就可以记录 4GB 的操作。从头开始写,写到末尾就又回到开头循环写,如下面这个图所示。

在这里插入图片描述
write pos 是当前记录的位置,一边写一边后移,写到第 3 号文件末尾后就回到 0 号文件开头。checkpoint 是当前要擦除的位置,也是往后推移并且循环的,擦除记录前要把记录更新到数据文件。

write pos 和 checkpoint 之间的是“粉板”上还空着的部分,可以用来记录新的操作。如果 write pos 追上 checkpoint,表示“粉板”满了,这时候不能再执行新的更新,得停下来先擦掉一些记录,把 checkpoint 推进一下。

有了 redo log,InnoDB 就可以保证即使数据库发生异常重启,之前提交的记录都不会丢失,这个能力称为crash-safe

要理解 crash-safe 这个概念,可以想想我们前面赊账记录的例子。只要赊账记录记在了粉板上或写在了账本上,之后即使掌柜忘记了,比如突然停业几天,恢复生意后依然可以通过账本和粉板上的数据明确赊账账目。

binlog

前面我们讲过,MySQL 整体来看,其实就有两块:一块是 Server 层,它主要做的是 MySQL 功能层面的事情;还有一块是引擎层,负责存储相关的具体事宜。上面我们聊到的粉板 redo log 是 InnoDB 引擎特有的日志,而 Server 层也有自己的日志,称为 binlog(归档日志)

我想你肯定会问,为什么会有两份日志呢?

因为最开始 MySQL 里并没有 InnoDB 引擎。MySQL 自带的引擎是 MyISAM,但是 MyISAM 没有 crash-safe 的能力,binlog 日志只能用于归档。而 InnoDB 是另一个公司以插件形式引入 MySQL 的,既然只依靠 binlog 是没有 crash-safe 能力的,所以 InnoDB 使用另外一套日志系统——也就是 redo log 来实现 crash-safe 能力。

这两种日志有以下三点不同。

  1. redo log 是 InnoDB 引擎特有的;binlog 是 MySQL 的 Server 层实现的,所有引擎都可以使用。
  2. redo log 是物理日志,记录的是“在某个数据页上做了什么修改”;binlog 是逻辑日志,记录的是这个语句的原始逻辑,比如“给 ID=2 这一行的 c 字段加 1 ”。
  3. redo log 是循环写的,空间固定会用完;binlog 是可以追加写入的。“追加写”是指 binlog 文件写到一定大小后会切换到下一个,并不会覆盖以前的日志。

有了对这两个日志的概念性理解,我们再来看执行器和 InnoDB 引擎在执行这个简单的 update 语句时的内部流程。

  1. 执行器先找引擎取 ID=2 这一行。ID 是主键,引擎直接用树搜索找到这一行。如果 ID=2这一行所在的数据页本来就在内存中,就直接返回给执行器;否则,需要先从磁盘读入内存,然后再返回。
  2. 执行器拿到引擎给的行数据,把这个值加上 1,比如原来是 N,现在就是 N+1,得到新的一行数据,再调用引擎接口写入这行新数据。
  3. 引擎将这行新数据更新到内存中,同时将这个更新操作记录到 redo log 里面,此时 redo log 处于 prepare状态。然后告知执行器执行完成了,随时可以提交事务。
  4. 执行器生成这个操作的 binlog,并把 binlog 写入磁盘
  5. 执行器调用引擎的提交事务接口,引擎把刚刚写入的 redo log 改成提交(commit)状态,更新完成。

这里我给出这个 update 语句的执行流程图,图中浅色框表示是在 InnoDB 内部执行的,深色框表示是在执行器中执行的。

在这里插入图片描述
update 语句执行流程

你可能注意到了,最后三步看上去有点“绕”,将 redo log 的写入拆成了两个步骤:prepare 和 commit,这就是”两阶段提交”。

两阶段提交

为什么必须有“两阶段提交”呢?这是为了让两份日志之间的逻辑一致。要说明这个问题,我们得从文章开头的那个问题说起:怎样让数据库恢复到半个月内任意一秒的状态?

前面我们说过了,binlog 会记录所有的逻辑操作,并且是采用“追加写”的形式。如果你的 DBA 承诺说半个月内可以恢复,那么备份系统中一定会保存最近半个月的所有 binlog,同时系统会定期做整库备份。这里的“定期”取决于系统的重要性,可以是一天一备,也可以是一周一备。

当需要恢复到指定的某一秒时,比如某天下午两点发现中午十二点有一次误删表,需要找回数据,那你可以这么做:

  • 首先,找到最近的一次全量备份,如果你运气好,可能就是昨天晚上的一个备份,从这个备份恢复到临时库;
  • 然后,从备份的时间点开始,将备份的 binlog 依次取出来,重放到中午误删表之前的那个时刻。
    这样你的临时库就跟误删之前的线上库一样了,然后你可以把表数据从临时库取出来,按需要恢复到线上库去。

好了,说完了数据恢复过程,我们回来说说,为什么日志需要“两阶段提交”。这里不妨用反证法来进行解释。

由于 redo log 和 binlog 是两个独立的逻辑,如果不用两阶段提交,要么就是先写完 redo log 再写 binlog,或者采用反过来的顺序。我们看看这两种方式会有什么问题。

仍然用前面的 update 语句来做例子。假设当前 ID=2 的行,字段 c 的值是 0,再假设执行 update 语句过程中在写完第一个日志后,第二个日志还没有写完期间发生了 crash,会出现什么情况呢?

  • 先写 redo log 后写 binlog。
    假设在 redo log 写完,binlog 还没有写完的时候,MySQL 进程异常重启。由于我们前面说过的,redo log 写完之后,系统即使崩溃,仍然能够把数据恢复回来,所以恢复后这一行 c 的值是 1。 但是由于 binlog 没写完就 crash 了,这时候 binlog 里面就没有记录这个语句。因此,之后备份日志的时候,存起来的 binlog 里面就没有这条语句。 然后你会发现,如果需要用这个 binlog 来恢复临时库的话,由于这个语句的 binlog 丢失,这个临时库就会少了这一次更新,恢复出来的这一行 c 的值就是 0,与原库的值不同。
  • 先写 binlog 后写 redo log。
    如果在 binlog 写完之后 crash,由于 redo log 还没写,崩溃恢复以后这个事务无效,所以这一行 c 的值是 0。但是 binlog 里面已经记录了“把 c 从 0 改成 1”这个日志。所以,在之后用 binlog 来恢复的时候就多了一个事务出来,恢复出来的这一行 c 的值就是 1,与原库的值不同。
    可以看到,如果不使用“两阶段提交”,那么数据库的状态就有可能和用它的日志恢复出来的库的状态不一致。

你可能会说,这个概率是不是很低,平时也没有什么动不动就需要恢复临时库的场景呀?

其实不是的,不只是误操作后需要用这个过程来恢复数据。当你需要扩容的时候,也就是需要再多搭建一些备库来增加系统的读能力的时候,现在常见的做法也是用全量备份加上应用 binlog 来实现的,这个“不一致”就会导致你的线上出现主从数据库不一致的情况。

简单说,redo log 和 binlog 都可以用于表示事务的提交状态,而两阶段提交就是让这两个状态保持逻辑上的一致

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/794110.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

动态规划之数字三角形模型+最长上升子序列模型

首先,我们从集合角度重新看待DP: 直接看题:https://www.acwing.com/problem/content/1029/ 就是取纸条的原题,我们令f[i1,j1,i2,j2]表示从(1,1),(1,1)分别走到(i1,j1),(i2,j2)的路径的max i1j1i2j2,于是我们可以把状…

ArrayList----源码分析

源码中的简介: List接口的可调整数组实现。实现所有可选列表操作,并允许所有元素,包括null。除了实现List接口之外,这个类还提供了一些方法来操作内部用于存储列表的数组的大小。(这个类大致相当于Vector,只是它是不同…

广电日志分析系统

需求 广电集团中有若干个系统都产生日志信息,目前大约分布与70到80台服务器中,分别是windows与Linux操作系统。需要将服务器上产生的日志文件利用我们的技术进行解析 设计 每个日志工作站负责30-50个服务器的日志解析工作。可以根据实际需求进行设置&…

ESP32CAM物联网教学11

ESP32CAM物联网教学11 霍霍webserver 在第八课的时候,小智把乐鑫公司提供的官方示例程序CameraWebServer改成了明码,这样说明这个官方程序也是可以更改的嘛。这个官方程序有四个文件,一共3500行代码,看着都头晕,小智决…

基于Python+Flask+MySQL的新冠疫情可视化系统

基于PythonFlaskMySQL的新冠疫情可视化系统 FlaskMySQL 基于PythonFlaskMySQL的新冠疫情可视化系统 项目主要依赖前端:layui,Echart,后端主要是Flask,系统的主要支持登录注册,Ecahrt构建可视化图,可更换主…

Oracle序列迁移重建

原因:oracle数据导入后序列不一致 解决办法:从原库中导出一份最新的序列号,在目标库中导入 1.删除目标库该用户下的所有索引 select DROP SEQUENCE ||sequence_name || ; from dba_sequences where sequence_owner xxxxx;2.查询出所有序列…

edge 学习工具包 math solver

简介 推荐微软推出的学习工具中的两项工具:数学求解器和 pdf 阅读器。 打开 edge 学习工具包的方法 :右上角三点-更多工具-学习工具包。 math solver 除了基础的计算求解外,还用图标展示公式,清晰直观。 地址:求解…

《C语言程序设计 第4版》笔记和代码 第十一章 指针和数组

第十一章 指针和数组 11.1 指针和一维数组间的关系 1 由于数组名代表数组元素的连续存储空间的首地址,因此,数组元素既可以用下标法也可以用指针来引用。 例11.1见文末 2 p1与p在本质上是两个不同的操作,前者不改变当前指针的指向&#xf…

240711_昇思学习打卡-Day23-LSTM+CRF序列标注(2)

240711_昇思学习打卡-Day23-LSTMCRF序列标注(2) 今天记录LSTMCRF序列标注的第二部分。仅作简单记录 Score计算 首先计算正确标签序列所对应的得分,这里需要注意,除了转移概率矩阵𝐏外,还需要维护两个大小…

k8s NetworkPolicy

Namespace 隔离 默认情况下,所有 Pod 之间是全通的。每个 Namespace 可以配置独立的网络策略,来 隔离 Pod 之间的流量。 v1.7 版本通过创建匹配所有 Pod 的 Network Policy 来作为默认的网络策略 默认拒绝所有 Pod 之间 Ingress 通信 apiVersion: …

零基础STM32单片机编程入门(九)IIC总线详解及EEPROM实战含源码视频

文章目录 一.概要二.IIC总线基本概念1.总体特征2.通讯流程 三.EEPROM介绍1.M24C08基本介绍2.向M24C08写一个字节时序图3.从M24C08读一个字节时序图 四.GPIO模拟IIC驱动M24C08读写五.CubeMX工程源代码下载六.讲解视频链接地址七.小结 一.概要 IIC(Inter-Integrated …

如何监控 PostgreSQL 中表空间的使用情况并进行合理的管理?

文章目录 如何监控 PostgreSQL 中表空间的使用情况并进行合理的管理 一、引言 在 PostgreSQL 数据库中,表空间(Tablespace)是用于管理数据库对象存储位置的逻辑存储区域。有效地监控和管理表空间的使用情况对于确保数据库的性能、优化存储资…

第11章 规划过程组(三)(11.11规划成本管理)

第11章 规划过程组(三)11.11规划成本管理,在第三版教材第403~404页; 文字图片音频方式 第一个知识点:成本管理概述 1、成本的类型(重要知识点) 直接成本 如项目团队差旅费、工资、项目使用的…

scrapy写爬虫

Scrapy是一个用于爬取网站数据并提取结构化信息的Python框架 一、Scrapy介绍 1.引擎(Engine) – Scrapy的引擎是控制数据流和触发事件的核心。它管理着Spider发送的请求和接收的响应,以及处理Spider生成的Item。引擎是Scrapy运行的驱动力。…

Qt学生管理系统(付源码)

Qt学生管理系统 一、前言1.1 项目介绍1.2 项目目标 2、需求说明2.1 功能性说明2.2 非功能性说明 三、UX设计3.1 登录界面3.2 学生数据展示3.3 信息插入和更新 三、架构说明3.1 客户端结构如下3.2 数据流程图3.2.1 数据管理3.2.2 管理员登录 四、 设计说明3.1 数据库设计3.2 结构…

unsupported_country_region_territory

最近调用chatgpt接口出现:unsupported_country_region_territory,Country, region, or territory not supported 翻译过来的大致意思就是

合宙 Air780E模块 AT 指令 MQTT连接

固件说明 重启模块 //tx ATRESET//rx ATRESETOK ^boot.romv!\n RDY^MODE: 17,17E_UTRAN ServiceCGEV: ME PDN ACT 1NITZ: 2024/07/10,08:33:440,0查询模块版本信息 //tx ATCGMR//rx ATCGMRCGMR: "AirM2M_780E_V1161_LTE_AT"OK基本流程 4G模块支持MQTT和MQTT SSl协…

某企业数据治理总体解决方案(45页PPT)

引言:集团企业数据治理总体解决方案旨在构建一个高效、安全、合规且灵活的数据管理体系,以支持企业决策优化、业务创新、风险管理和运营效率提升。该方案通过整合数据资源、规范数据流程、强化数据质量和促进数据共享,实现数据资产的最大化价…

Python task

def wordcount(text):# 将文本分割成单词列表,并转换为小写words text.lower().split()# 初始化一个空字典用于存储单词计数word_counts {}# 遍历单词列表中的每个单词for word in words:# 如果单词在字典中,则计数加1,否则将单词加入字典并…

Flutter跨平台开发技术

仅分享文字,见谅 Flutter Flutter 介绍 功能跨平台性架构流行度Flutter vs React Native 配置 Windows Flutter App 环境配置 Tizen Flutter App 环境用 Dart 语言开发 Flutter AppFlutter-Tizen 的限制 Flutter 介绍 Flutter 是由 Google 推出的开源移动应用开发…